These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15891727)

  • 1. Effect of simulated shoulder thermal capsulorrhaphy using radiofrequency energy on glenohumeral fluid temperature.
    Lu Y; Bogdanske J; Lopez M; Cole BJ; Markel MD
    Arthroscopy; 2005 May; 21(5):592-6. PubMed ID: 15891727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of radiofrequency energy on glenohumeral fluid temperature during shoulder arthroscopy.
    Good CR; Shindle MK; Griffith MH; Wanich T; Warren RF
    J Bone Joint Surg Am; 2009 Feb; 91(2):429-34. PubMed ID: 19181988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermometric determination of cartilage matrix temperatures during thermal chondroplasty: comparison of bipolar and monopolar radiofrequency devices.
    Edwards RB; Lu Y; Rodriguez E; Markel MD
    Arthroscopy; 2002 Apr; 18(4):339-46. PubMed ID: 11951190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The thermal field of radiofrequency probes at chondroplasty settings.
    Kaplan LD; Ernsthausen JM; Bradley JP; Fu FH; Farkas DL
    Arthroscopy; 2003; 19(6):632-40. PubMed ID: 12861202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subacromial temperature profile during bipolar radiofrequency use in shoulder arthroscopy. Comparison of Coblation
    Huynh V; Barbier O; Bajard X; Bouchard A; Ollat D; Versier G
    Orthop Traumatol Surg Res; 2017 Jun; 103(4):489-491. PubMed ID: 28363877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature profile of radiofrequency probe application in wrist arthroscopy: monopolar versus bipolar.
    Huber M; Eder C; Mueller M; Kujat R; Roll C; Nerlich M; Prantl L; Gehmert S
    Arthroscopy; 2013 Apr; 29(4):645-52. PubMed ID: 23380231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiofrequency energy induced heating of bovine articular cartilage: comparison between temperature-controlled, monopolar, and bipolar systems.
    Shellock FG
    Knee Surg Sports Traumatol Arthrosc; 2001 Nov; 9(6):392-7. PubMed ID: 11734879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiofrequency energy induced heating of bovine capsular tissue: in vitro assessment of newly developed, temperature-controlled monopolar and bipolar radiofrequency electrodes.
    Shellock FG
    Knee Surg Sports Traumatol Arthrosc; 2002 Jul; 10(4):254-9. PubMed ID: 12211186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axillary nerve temperatures during radiofrequency capsulorrhaphy of the shoulder.
    Gryler EC; Greis PE; Burks RT; West J
    Arthroscopy; 2001 Jul; 17(6):567-72. PubMed ID: 11447541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature changes associated with radiofrequency energy-induced heating of bovine capsular tissue: evaluation of bipolar RF electrodes.
    Shellock FG; Shields CL
    Arthroscopy; 2000; 16(4):348-58. PubMed ID: 10802471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of radiofrequency treatment and mechanical debridement of fibrillated cartilage in an equine model.
    Edwards RB; Lu Y; Cole BJ; Muir P; Markel MD
    Vet Comp Orthop Traumatol; 2008; 21(1):41-8. PubMed ID: 18288343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immediate effect of thermal capsulorrhaphy on glenohumeral joint mobility.
    Chang JH; Hsu AT; Lee SJ; Chang GL
    Clin Biomech (Bristol, Avon); 2004 Jul; 19(6):572-8. PubMed ID: 15234480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors influencing intra-articular fluid temperature profiles with radiofrequency ablation.
    Zoric BB; Horn N; Braun S; Millett PJ
    J Bone Joint Surg Am; 2009 Oct; 91(10):2448-54. PubMed ID: 19797581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature in and around the scapholunate ligament during radiofrequency shrinkage: a cadaver study.
    Huber M; Loibl M; Eder C; Zellner J; Kujat R; Nerlich M; Gehmert S
    J Hand Surg Am; 2015 Feb; 40(2):259-65. PubMed ID: 25500298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of radiofrequency use on hip arthroscopy irrigation fluid temperature.
    McCormick F; Alpaugh K; Nwachukwu BU; Xu S; Martin SD
    Arthroscopy; 2013 Feb; 29(2):336-42. PubMed ID: 23290183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Working conditions of bipolar radiofrequency on human articular cartilage repair following thermal injury during arthroscopy.
    Huang Y; Zhang Y; Ding X; Liu S; Sun T
    Chin Med J (Engl); 2014; 127(22):3881-6. PubMed ID: 25421185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiofrequency energy-induced heating of bovine capsular tissue: Temperature changes produced by bipolar versus monopolar electrodes.
    Shellock FG
    Arthroscopy; 2001 Feb; 17(2):124-31. PubMed ID: 11172240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glenohumeral volume reduction in arthroscopic shoulder reconstruction: a cadaveric analysis of suture plication and thermal capsulorrhaphy.
    Karas SG; Creighton RA; DeMorat GJ
    Arthroscopy; 2004 Feb; 20(2):179-84. PubMed ID: 14760352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of radiofrequency energy probe speed and application force on chondrocyte viability.
    Lu Y; Meyer ML; Bogdanske JJ; Markel MD
    Vet Comp Orthop Traumatol; 2007; 20(1):34-7. PubMed ID: 17364094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiofrequency energy-induced heating of bovine articular cartilage: evaluation of a new temperature-controlled, bipolar radiofrequency system used at different settings.
    Shellock FG
    J Knee Surg; 2002; 15(2):90-6. PubMed ID: 12013079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.