BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

526 related articles for article (PubMed ID: 15892626)

  • 1. Molecular mechanisms of membrane perturbation by antimicrobial peptides and the use of biophysical studies in the design of novel peptide antibiotics.
    Lohner K; Blondelle SE
    Comb Chem High Throughput Screen; 2005 May; 8(3):241-56. PubMed ID: 15892626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of lipids in the interaction of antimicrobial peptides with membranes.
    Teixeira V; Feio MJ; Bastos M
    Prog Lipid Res; 2012 Apr; 51(2):149-77. PubMed ID: 22245454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid topology and electrostatic interactions underpin lytic activity of linear cationic antimicrobial peptides in membranes.
    Paterson DJ; Tassieri M; Reboud J; Wilson R; Cooper JM
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):E8324-E8332. PubMed ID: 28931578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New strategies for novel antibiotics: peptides targeting bacterial cell membranes.
    Lohner K
    Gen Physiol Biophys; 2009 Jun; 28(2):105-16. PubMed ID: 19592707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial properties of membrane-active dodecapeptides derived from MSI-78.
    Monteiro C; Fernandes M; Pinheiro M; Maia S; Seabra CL; Ferreira-da-Silva F; Costa F; Reis S; Gomes P; Martins MC
    Biochim Biophys Acta; 2015 May; 1848(5):1139-46. PubMed ID: 25680229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of an antimicrobial peptide to bacterial cells: Interaction with different species, strains and cellular components.
    Savini F; Loffredo MR; Troiano C; Bobone S; Malanovic N; Eichmann TO; Caprio L; Canale VC; Park Y; Mangoni ML; Stella L
    Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183291. PubMed ID: 32234322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria.
    Hale JD; Hancock RE
    Expert Rev Anti Infect Ther; 2007 Dec; 5(6):951-9. PubMed ID: 18039080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane-active Antimicrobial Peptides as Template Structures for Novel Antibiotic Agents.
    Lohner K
    Curr Top Med Chem; 2017; 17(5):508-519. PubMed ID: 28117020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides.
    Malanovic N; Lohner K
    Biochim Biophys Acta; 2016 May; 1858(5):936-46. PubMed ID: 26577273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane disintegration by the antimicrobial peptide (P)GKY20: lipid segregation and domain formation.
    Oliva R; Del Vecchio P; Grimaldi A; Notomista E; Cafaro V; Pane K; Schuabb V; Winter R; Petraccone L
    Phys Chem Chem Phys; 2019 Feb; 21(7):3989-3998. PubMed ID: 30706924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer simulation of antimicrobial peptides.
    Mátyus E; Kandt C; Tieleman DP
    Curr Med Chem; 2007; 14(26):2789-98. PubMed ID: 18045125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential scanning calorimetry and X-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems.
    Lohner K; Prenner EJ
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):141-56. PubMed ID: 10590306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of lipidation on the mode of action of a small RW-rich antimicrobial peptide.
    Wenzel M; Schriek P; Prochnow P; Albada HB; Metzler-Nolte N; Bandow JE
    Biochim Biophys Acta; 2016 May; 1858(5):1004-11. PubMed ID: 26603779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Antimicrobial peptides: mode of action and perspectives of practical application].
    Okorochenkov SA; Zheltukhina GA; Nebol'sin VE
    Biomed Khim; 2012; 58(2):131-43. PubMed ID: 22724354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility.
    Saravanan R; Li X; Lim K; Mohanram H; Peng L; Mishra B; Basu A; Lee JM; Bhattacharjya S; Leong SS
    Biotechnol Bioeng; 2014 Jan; 111(1):37-49. PubMed ID: 23860860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cationic antimicrobial peptides : issues for potential clinical use.
    Bradshaw J
    BioDrugs; 2003; 17(4):233-40. PubMed ID: 12899640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into the antimicrobial mechanism of action of β
    Koivuniemi A; Fallarero A; Bunker A
    Biochim Biophys Acta Biomembr; 2019 Nov; 1861(11):183028. PubMed ID: 31376362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues.
    Arias M; Hoffarth ER; Ishida H; Aramini JM; Vogel HJ
    Biochim Biophys Acta; 2016 May; 1858(5):1012-23. PubMed ID: 26724205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial Peptide Structure and Mechanism of Action: A Focus on the Role of Membrane Structure.
    Lee TH; Hall KN; Aguilar MI
    Curr Top Med Chem; 2016; 16(1):25-39. PubMed ID: 26139112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insertion mode of a novel anionic antimicrobial peptide MDpep5 (Val-Glu-Ser-Trp-Val) from Chinese traditional edible larvae of housefly and its effect on surface potential of bacterial membrane.
    Tang YL; Shi YH; Zhao W; Hao G; Le GW
    J Pharm Biomed Anal; 2008 Dec; 48(4):1187-94. PubMed ID: 18926657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.