These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 15892626)

  • 21. Insertion mode of a novel anionic antimicrobial peptide MDpep5 (Val-Glu-Ser-Trp-Val) from Chinese traditional edible larvae of housefly and its effect on surface potential of bacterial membrane.
    Tang YL; Shi YH; Zhao W; Hao G; Le GW
    J Pharm Biomed Anal; 2008 Dec; 48(4):1187-94. PubMed ID: 18926657
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Membrane active antimicrobial activity and molecular dynamics study of a novel cationic antimicrobial peptide polybia-MPI, from the venom of Polybia paulista.
    Wang K; Yan J; Dang W; Liu X; Chen R; Zhang J; Zhang B; Zhang W; Kai M; Yan W; Yang Z; Xie J; Wang R
    Peptides; 2013 Jan; 39():80-8. PubMed ID: 23159560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of host defence peptides for antimicrobial and immunity enhancing activities.
    McPhee JB; Scott MG; Hancock RE
    Comb Chem High Throughput Screen; 2005 May; 8(3):257-72. PubMed ID: 15892627
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?
    Brogden KA
    Nat Rev Microbiol; 2005 Mar; 3(3):238-50. PubMed ID: 15703760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Designing potent antimicrobial peptides by disulphide linked dimerization and N-terminal lipidation to increase antimicrobial activity and membrane perturbation: Structural insights into lipopolysaccharide binding.
    Datta A; Kundu P; Bhunia A
    J Colloid Interface Sci; 2016 Jan; 461():335-345. PubMed ID: 26407061
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New lytic peptides based on the D,L-amphipathic helix motif preferentially kill tumor cells compared to normal cells.
    Papo N; Shai Y
    Biochemistry; 2003 Aug; 42(31):9346-54. PubMed ID: 12899621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NMR Structures and Interactions of Antimicrobial Peptides with Lipopolysaccharide: Connecting Structures to Functions.
    Bhattacharjya S
    Curr Top Med Chem; 2016; 16(1):4-15. PubMed ID: 26139110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural Insights into the Mode of Action of the Peptide Antibiotic Copsin.
    Franzoi M; van Heuvel Y; Thomann S; Schürch N; Kallio PT; Venier P; Essig A
    Biochemistry; 2017 Sep; 56(37):4992-5001. PubMed ID: 28825809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Branched phospholipids render lipid vesicles more susceptible to membrane-active peptides.
    Mitchell NJ; Seaton P; Pokorny A
    Biochim Biophys Acta; 2016 May; 1858(5):988-94. PubMed ID: 26514602
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacterial species selective toxicity of two isomeric alpha/beta-peptides: role of membrane lipids.
    Epand RF; Schmitt MA; Gellman SH; Sen A; Auger M; Hughes DW; Epand RM
    Mol Membr Biol; 2005; 22(6):457-69. PubMed ID: 16373318
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial membrane lipids in the action of antimicrobial agents.
    Epand RM; Epand RF
    J Pept Sci; 2011 May; 17(5):298-305. PubMed ID: 21480436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties.
    Han HM; Gopal R; Park Y
    Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dimerization of Antimicrobial Peptides: A Promising Strategy to Enhance Antimicrobial Peptide Activity.
    Lorenzon EN; Piccoli JP; Santos-Filho NA; Cilli EM
    Protein Pept Lett; 2019; 26(2):98-107. PubMed ID: 30605048
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The relationship between peptide structure and antibacterial activity.
    Powers JP; Hancock RE
    Peptides; 2003 Nov; 24(11):1681-91. PubMed ID: 15019199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Potent Antibacterial Organometallic Peptide Conjugates.
    Albada B; Metzler-Nolte N
    Acc Chem Res; 2017 Oct; 50(10):2510-2518. PubMed ID: 28953347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. D-form KLKLLLLLKLK-NH
    Manabe T; Kawasaki K
    Sci Rep; 2017 Mar; 7():43384. PubMed ID: 28262682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of spontaneous lipid curvature in the interaction of interfacially active peptides with membranes.
    Koller D; Lohner K
    Biochim Biophys Acta; 2014 Sep; 1838(9):2250-9. PubMed ID: 24853655
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Beyond electrostatics: Antimicrobial peptide selectivity and the influence of cholesterol-mediated fluidity and lipid chain length on protegrin-1 activity.
    Henderson JM; Iyengar NS; Lam KLH; Maldonado E; Suwatthee T; Roy I; Waring AJ; Lee KYC
    Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182977. PubMed ID: 31077677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Characteristic of AMP and the effects of chemical modifications on the modulation of their antimicrobial properties].
    Makowska M; Prahl A; Małuch I
    Postepy Biochem; 2019 Nov; 65(4):278-288. PubMed ID: 31945282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synergistic Biophysical Techniques Reveal Structural Mechanisms of Engineered Cationic Antimicrobial Peptides in Lipid Model Membranes.
    Heinrich F; Salyapongse A; Kumagai A; Dupuy FG; Shukla K; Penk A; Huster D; Ernst RK; Pavlova A; Gumbart JC; Deslouches B; Di YP; Tristram-Nagle S
    Chemistry; 2020 May; 26(28):6247-6256. PubMed ID: 32166806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.