These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 15892700)
1. Physiological and molecular characterization of a microbial community established in unsaturated, petroleum-contaminated soil. Kasai Y; Takahata Y; Hoaki T; Watanabe K Environ Microbiol; 2005 Jun; 7(6):806-18. PubMed ID: 15892700 [TBL] [Abstract][Full Text] [Related]
2. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Kirk JL; Klironomos JN; Lee H; Trevors JT Environ Pollut; 2005 Feb; 133(3):455-65. PubMed ID: 15519721 [TBL] [Abstract][Full Text] [Related]
4. Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment. Gremion F; Chatzinotas A; Kaufmann K; Von Sigler W; Harms H FEMS Microbiol Ecol; 2004 May; 48(2):273-83. PubMed ID: 19712410 [TBL] [Abstract][Full Text] [Related]
5. The selection of mixed microbial inocula in environmental biotechnology: example using petroleum contaminated tropical soils. Supaphol S; Panichsakpatana S; Trakulnaleamsai S; Tungkananuruk N; Roughjanajirapa P; O'Donnell AG J Microbiol Methods; 2006 Jun; 65(3):432-41. PubMed ID: 16226327 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the intrinsic methyl tert-butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems. Moreels D; Bastiaens L; Ollevier F; Merckx R; Diels L; Springael D FEMS Microbiol Ecol; 2004 Jul; 49(1):121-8. PubMed ID: 19712389 [TBL] [Abstract][Full Text] [Related]
7. Rapid intrinsic biodegradation of benzene, toluene, and xylenes at the boundary of a gasoline-contaminated plume under natural attenuation. Takahata Y; Kasai Y; Hoaki T; Watanabe K Appl Microbiol Biotechnol; 2006 Dec; 73(3):713-22. PubMed ID: 16957896 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of indigenous bacterial communities associated with crude oil degradation in soil microcosms during nutrient-enhanced bioremediation. Chikere CB; Surridge K; Okpokwasili GC; Cloete TE Waste Manag Res; 2012 Mar; 30(3):225-36. PubMed ID: 21824988 [TBL] [Abstract][Full Text] [Related]
9. The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers. Tuomi PM; Salminen JM; Jørgensen KS FEMS Microbiol Ecol; 2004 Dec; 51(1):99-107. PubMed ID: 16329859 [TBL] [Abstract][Full Text] [Related]
10. PCR-DGGE method to assess the diversity of BTEX mono-oxygenase genes at contaminated sites. Hendrickx B; Dejonghe W; Faber F; Boënne W; Bastiaens L; Verstraete W; Top EM; Springael D FEMS Microbiol Ecol; 2006 Feb; 55(2):262-73. PubMed ID: 16420634 [TBL] [Abstract][Full Text] [Related]
11. Comparison of archaeal and bacterial community structures in heavily oil-contaminated and pristine soils. Liu R; Zhang Y; Ding R; Li D; Gao Y; Yang M J Biosci Bioeng; 2009 Nov; 108(5):400-7. PubMed ID: 19804864 [TBL] [Abstract][Full Text] [Related]
12. Microbial community response to petroleum hydrocarbon contamination in the unsaturated zone at the experimental field site Vaerløse, Denmark. Kaufmann K; Christophersen M; Buttler A; Harms H; Höhener P FEMS Microbiol Ecol; 2004 Jun; 48(3):387-99. PubMed ID: 19712308 [TBL] [Abstract][Full Text] [Related]
14. Microbial community structure in hexadecane- and naphthalene-enriched gas station soil. Baek K; Kim HS J Microbiol Biotechnol; 2009 Jul; 19(7):651-7. PubMed ID: 19652511 [TBL] [Abstract][Full Text] [Related]
15. Bioremediation potential of a tropical soil contaminated with a mixture of crude oil and production water. Alvarez VM; Santos SC; Casella Rda C; Vital RL; Sebastin GV; Seldin L J Microbiol Biotechnol; 2008 Dec; 18(12):1966-74. PubMed ID: 19131701 [TBL] [Abstract][Full Text] [Related]
16. Acinetobacter diversity in environmental samples assessed by 16S rRNA gene PCR-DGGE fingerprinting. Vanbroekhoven K; Ryngaert A; Wattiau P; Mot R; Springael D FEMS Microbiol Ecol; 2004 Oct; 50(1):37-50. PubMed ID: 19712375 [TBL] [Abstract][Full Text] [Related]
17. Monitoring of microbial diversity and activity during bioremediation of crude oil-contaminated soil with different treatments. Baek KH; Yoon BD; Kim BH; Cho DH; Lee IS; Oh HM; Kim HS J Microbiol Biotechnol; 2007 Jan; 17(1):67-73. PubMed ID: 18051355 [TBL] [Abstract][Full Text] [Related]
18. Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems. An YJ; Joo YH; Hong IY; Ryu HW; Cho KS Appl Microbiol Biotechnol; 2004 Oct; 65(5):611-9. PubMed ID: 15278317 [TBL] [Abstract][Full Text] [Related]
19. Petroleum hydrocarbon biodegradation under seasonal freeze-thaw soil temperature regimes in contaminated soils from a sub-Arctic site. Chang W; Klemm S; Beaulieu C; Hawari J; Whyte L; Ghoshal S Environ Sci Technol; 2011 Feb; 45(3):1061-6. PubMed ID: 21194195 [TBL] [Abstract][Full Text] [Related]
20. Resilience of the rhizosphere Pseudomonas and ammonia-oxidizing bacterial populations during phytoextraction of heavy metal polluted soil with poplar. Frey B; Pesaro M; Rüdt A; Widmer F Environ Microbiol; 2008 Jun; 10(6):1433-49. PubMed ID: 18279346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]