These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 15892702)
1. Stable isotope probing analysis of the influence of liming on root exudate utilization by soil microorganisms. Rangel-Castro JI; Killham K; Ostle N; Nicol GW; Anderson IC; Scrimgeour CM; Ineson P; Meharg A; Prosser JI Environ Microbiol; 2005 Jun; 7(6):828-38. PubMed ID: 15892702 [TBL] [Abstract][Full Text] [Related]
2. Flux and turnover of fixed carbon in soil microbial biomass of limed and unlimed plots of an upland grassland ecosystem. Rangel-Castro JI; Prosser JI; Ostle N; Scrimgeour CM; Killham K; Meharg AA Environ Microbiol; 2005 Apr; 7(4):544-52. PubMed ID: 15816931 [TBL] [Abstract][Full Text] [Related]
4. 13CO2 pulse labelling of plants in tandem with stable isotope probing: methodological considerations for examining microbial function in the rhizosphere. Griffiths RI; Manefield M; Ostle N; McNamara N; O'Donnell AG; Bailey MJ; Whiteley AS J Microbiol Methods; 2004 Jul; 58(1):119-29. PubMed ID: 15177910 [TBL] [Abstract][Full Text] [Related]
5. Bacterial and fungal communities in bulk soil and rhizospheres of aluminum-tolerant and aluminum-sensitive maize (Zea mays L.) lines cultivated in unlimed and limed Cerrado soil. Da Mota FF; Gomes EA; Marriel IE; Paiva E; Seldin L J Microbiol Biotechnol; 2008 May; 18(5):805-14. PubMed ID: 18633275 [TBL] [Abstract][Full Text] [Related]
6. Spatial variation of active microbiota in the rice rhizosphere revealed by in situ stable isotope probing of phospholipid fatty acids. Lu Y; Abraham WR; Conrad R Environ Microbiol; 2007 Feb; 9(2):474-81. PubMed ID: 17222145 [TBL] [Abstract][Full Text] [Related]
7. Cultivation-independent in situ molecular analysis of bacteria involved in degradation of pentachlorophenol in soil. Mahmood S; Paton GI; Prosser JI Environ Microbiol; 2005 Sep; 7(9):1349-60. PubMed ID: 16104858 [TBL] [Abstract][Full Text] [Related]
8. Identification of cellulolytic bacteria in soil by stable isotope probing. Haichar FZ; Achouak W; Christen R; Heulin T; Marol C; Marais MF; Mougel C; Ranjard L; Balesdent J; Berge O Environ Microbiol; 2007 Mar; 9(3):625-34. PubMed ID: 17298363 [TBL] [Abstract][Full Text] [Related]
9. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Lu Y; Conrad R Science; 2005 Aug; 309(5737):1088-90. PubMed ID: 16099988 [TBL] [Abstract][Full Text] [Related]
10. Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. Bressan M; Roncato MA; Bellvert F; Comte G; Haichar FZ; Achouak W; Berge O ISME J; 2009 Nov; 3(11):1243-57. PubMed ID: 19554039 [TBL] [Abstract][Full Text] [Related]
11. Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Lu Y; Rosencrantz D; Liesack W; Conrad R Environ Microbiol; 2006 Aug; 8(8):1351-60. PubMed ID: 16872399 [TBL] [Abstract][Full Text] [Related]
12. Specific rhizosphere bacterial and fungal groups respond differently to elevated atmospheric CO(2). Drigo B; van Veen JA; Kowalchuk GA ISME J; 2009 Oct; 3(10):1204-17. PubMed ID: 19536195 [TBL] [Abstract][Full Text] [Related]
13. Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ. Qiu Q; Noll M; Abraham WR; Lu Y; Conrad R ISME J; 2008 Jun; 2(6):602-14. PubMed ID: 18385771 [TBL] [Abstract][Full Text] [Related]
14. Resilience of the rhizosphere Pseudomonas and ammonia-oxidizing bacterial populations during phytoextraction of heavy metal polluted soil with poplar. Frey B; Pesaro M; Rüdt A; Widmer F Environ Microbiol; 2008 Jun; 10(6):1433-49. PubMed ID: 18279346 [TBL] [Abstract][Full Text] [Related]
15. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Webster G; Watt LC; Rinna J; Fry JC; Evershed RP; Parkes RJ; Weightman AJ Environ Microbiol; 2006 Sep; 8(9):1575-89. PubMed ID: 16913918 [TBL] [Abstract][Full Text] [Related]
16. Differential response of archaeal and bacterial communities to nitrogen inputs and pH changes in upland pasture rhizosphere soil. Nicol GW; Webster G; Glover LA; Prosser JI Environ Microbiol; 2004 Aug; 6(8):861-7. PubMed ID: 15250888 [TBL] [Abstract][Full Text] [Related]
17. Dynamics and identification of soil microbial populations actively assimilating carbon from 13C-labelled wheat residue as estimated by DNA- and RNA-SIP techniques. Bernard L; Mougel C; Maron PA; Nowak V; Lévêque J; Henault C; Haichar FZ; Berge O; Marol C; Balesdent J; Gibiat F; Lemanceau P; Ranjard L Environ Microbiol; 2007 Mar; 9(3):752-64. PubMed ID: 17298374 [TBL] [Abstract][Full Text] [Related]
18. Use of 13C labeling to assess carbon partitioning in transgenic and nontransgenic (parental) rice and their rhizosphere soil microbial communities. Wu WX; Liu W; Lu HH; Chen YX; Medha D; Janice T FEMS Microbiol Ecol; 2009 Jan; 67(1):93-102. PubMed ID: 19049503 [TBL] [Abstract][Full Text] [Related]
19. Effects of a humic acid and its size-fractions on the bacterial community of soil rhizosphere under maize (Zea mays L.). Puglisi E; Fragoulis G; Ricciuti P; Cappa F; Spaccini R; Piccolo A; Trevisan M; Crecchio C Chemosphere; 2009 Oct; 77(6):829-37. PubMed ID: 19712956 [TBL] [Abstract][Full Text] [Related]