These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 15892740)
1. Removal of micro-organisms in a small-scale hydroponics wastewater treatment system. Ottoson J; Norström A; Dalhammar G Lett Appl Microbiol; 2005; 40(6):443-7. PubMed ID: 15892740 [TBL] [Abstract][Full Text] [Related]
2. Removal of human enteric viruses and indicator microorganisms from domestic wastewater by aerated lagoons. Locas A; Martinez V; Payment P Can J Microbiol; 2010 Feb; 56(2):188-94. PubMed ID: 20237581 [TBL] [Abstract][Full Text] [Related]
3. Performance of a full-scale membrane bioreactor system in treating municipal wastewater for reuse purposes. Zanetti F; De Luca G; Sacchetti R Bioresour Technol; 2010 May; 101(10):3768-71. PubMed ID: 20093005 [TBL] [Abstract][Full Text] [Related]
4. Comparative reductions of bacterial indicators, bacteriophage-infecting enteric bacteria and enteroviruses in wastewater tertiary treatments by lagooning and UV-radiation. Gomila M; Solis JJ; David Z; Ramon C; Lalucat J Water Sci Technol; 2008; 58(11):2223-33. PubMed ID: 19092200 [TBL] [Abstract][Full Text] [Related]
5. Fate of Cryptosporidium oocysts, Giardia cysts, and microbial indicators during wastewater treatment and anaerobic sludge digestion. Chauret C; Springthorpe S; Sattar S Can J Microbiol; 1999 Mar; 45(3):257-62. PubMed ID: 10408099 [TBL] [Abstract][Full Text] [Related]
6. Removal of enteric viruses and selected microbial indicators by UV irradiation of secondary effluent. Jacangelo JG; Loughran P; Petrik B; Simpson D; McIlroy C Water Sci Technol; 2003; 47(9):193-8. PubMed ID: 12830960 [TBL] [Abstract][Full Text] [Related]
7. A comparison of efficiencies of microbiological pollution removal in six sewage treatment plants with different treatment systems. Kistemann T; Rind E; Rechenburg A; Koch C; Classen T; Herbst S; Wienand I; Exner M Int J Hyg Environ Health; 2008 Oct; 211(5-6):534-45. PubMed ID: 18565791 [TBL] [Abstract][Full Text] [Related]
8. Ensuring safe reuse of residential wastewater: reduction of microbes and genes using peat biofilter and batch chlorination in an on-site treatment system. Park E; Mancl KM; Tuovinen OH; Bisesi MS; Lee J J Appl Microbiol; 2016 Dec; 121(6):1777-1788. PubMed ID: 27588570 [TBL] [Abstract][Full Text] [Related]
9. Removal and relationships of microbial indicators in a water treatment and reclamation facility. Alcalde L; Folch M; Tapias JC J Water Health; 2012 Dec; 10(4):549-56. PubMed ID: 23165712 [TBL] [Abstract][Full Text] [Related]
11. Selective elimination of bacterial faecal indicators in the Schmutzdecke of slow sand filtration columns. Pfannes KR; Langenbach KM; Pilloni G; Stührmann T; Euringer K; Lueders T; Neu TR; Müller JA; Kästner M; Meckenstock RU Appl Microbiol Biotechnol; 2015 Dec; 99(23):10323-32. PubMed ID: 26264137 [TBL] [Abstract][Full Text] [Related]
12. Fate of pathogenic microorganisms and indicators in secondary activated sludge wastewater treatment plants. Wen Q; Tutuka C; Keegan A; Jin B J Environ Manage; 2009 Mar; 90(3):1442-7. PubMed ID: 18977580 [TBL] [Abstract][Full Text] [Related]
13. GAC adsorption filters as barriers for viruses, bacteria and protozoan (oo)cysts in water treatment. Hijnen WA; Suylen GM; Bahlman JA; Brouwer-Hanzens A; Medema GJ Water Res; 2010 Feb; 44(4):1224-34. PubMed ID: 19892384 [TBL] [Abstract][Full Text] [Related]
14. Reduction of enteric microbes in flushed swine wastewater treated by a biological aerated filter and UV irradiation. Hill VR; Kantardjieff A; Sobsey MD; Westerman PW Water Environ Res; 2002; 74(1):91-9. PubMed ID: 11995872 [TBL] [Abstract][Full Text] [Related]
15. Comparing the partitioning behavior of Giardia and Cryptosporidium with that of indicator organisms in stormwater runoff. Cizek AR; Characklis GW; Krometis LA; Hayes JA; Simmons OD; Di Lonardo S; Alderisio KA; Sobsey MD Water Res; 2008 Nov; 42(17):4421-38. PubMed ID: 18804835 [TBL] [Abstract][Full Text] [Related]
16. Decrease of enteric micro-organisms from rural sewage sludge during their composting in straw mixture. Pourcher AM; Morand P; Picard-Bonnaud F; Billaudel S; Monpoeho S; Federighi M; Ferré V; Moguedet G J Appl Microbiol; 2005; 99(3):528-39. PubMed ID: 16108794 [TBL] [Abstract][Full Text] [Related]
17. Fecal contamination of agricultural soils before and after hurricane-associated flooding in North Carolina. Casteel MJ; Sobsey MD; Mueller JP J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(2):173-84. PubMed ID: 16423723 [TBL] [Abstract][Full Text] [Related]
18. Efficiency of natural systems for removal of bacteria and pathogenic parasites from wastewater. Reinoso R; Torres LA; Bécares E Sci Total Environ; 2008 Jun; 395(2-3):80-6. PubMed ID: 18374393 [TBL] [Abstract][Full Text] [Related]
19. Removal of bacterial fecal indicators, coliphages and enteric adenoviruses from waters with high fecal pollution by slow sand filtration. Bauer R; Dizer H; Graeber I; Rosenwinkel KH; López-Pila JM Water Res; 2011 Jan; 45(2):439-52. PubMed ID: 20851449 [TBL] [Abstract][Full Text] [Related]
20. Implications of faecal indicator bacteria for the microbiological assessment of roof-harvested rainwater quality in southeast Queensland, Australia. Ahmed W; Goonetilleke A; Gardner T Can J Microbiol; 2010 Jun; 56(6):471-9. PubMed ID: 20657617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]