These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 15893325)

  • 1. Desolvation is a likely origin of robust enthalpic barriers to protein folding.
    Liu Z; Chan HS
    J Mol Biol; 2005 Jun; 349(4):872-89. PubMed ID: 15893325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing possible downhill folding: native contact topology likely places a significant constraint on the folding cooperativity of proteins with approximately 40 residues.
    Badasyan A; Liu Z; Chan HS
    J Mol Biol; 2008 Dec; 384(2):512-30. PubMed ID: 18823994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Desolvation barrier effects are a likely contributor to the remarkable diversity in the folding rates of small proteins.
    Ferguson A; Liu Z; Chan HS
    J Mol Biol; 2009 Jun; 389(3):619-36. PubMed ID: 19362564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvation and desolvation effects in protein folding: native flexibility, kinetic cooperativity and enthalpic barriers under isostability conditions.
    Liu Z; Chan HS
    Phys Biol; 2005 Nov; 2(4):S75-85. PubMed ID: 16280624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chevron behavior and isostable enthalpic barriers in protein folding: successes and limitations of simple Gō-like modeling.
    Kaya H; Liu Z; Chan HS
    Biophys J; 2005 Jul; 89(1):520-35. PubMed ID: 15863486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nature of the free energy barriers to two-state folding.
    Akmal A; Muñoz V
    Proteins; 2004 Oct; 57(1):142-52. PubMed ID: 15326600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural selection for kinetic stability is a likely origin of correlations between mutational effects on protein energetics and frequencies of amino acid occurrences in sequence alignments.
    Godoy-Ruiz R; Ariza F; Rodriguez-Larrea D; Perez-Jimenez R; Ibarra-Molero B; Sanchez-Ruiz JM
    J Mol Biol; 2006 Oct; 362(5):966-78. PubMed ID: 16935299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of solvation barriers in protein kinetic stability.
    Rodriguez-Larrea D; Minning S; Borchert TV; Sanchez-Ruiz JM
    J Mol Biol; 2006 Jul; 360(3):715-24. PubMed ID: 16784752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple two-state protein folding kinetics requires near-levinthal thermodynamic cooperativity.
    Kaya H; Chan HS
    Proteins; 2003 Sep; 52(4):510-23. PubMed ID: 12910451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential barriers and an obligatory metastable intermediate define the apparent two-state folding pathway of the ubiquitin-like PB1 domain of NBR1.
    Chen P; Long J; Searle MS
    J Mol Biol; 2008 Mar; 376(5):1463-77. PubMed ID: 18234223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-linear effects of temperature and urea on the thermodynamics and kinetics of folding and unfolding of hisactophilin.
    Wong HJ; Stathopulos PB; Bonner JM; Sawyer M; Meiering EM
    J Mol Biol; 2004 Dec; 344(4):1089-107. PubMed ID: 15544814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic properties of transient intermediates and transition states in the folding of two contrasting protein structures.
    Parker MJ; Lorch M; Sessions RB; Clarke AR
    Biochemistry; 1998 Feb; 37(8):2538-45. PubMed ID: 9485403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of desolvation barriers and sidechains on local-nonlocal coupling and chevron behaviors in coarse-grained models of protein folding.
    Chen T; Chan HS
    Phys Chem Chem Phys; 2014 Apr; 16(14):6460-79. PubMed ID: 24554086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive analysis of protein folding activation thermodynamics reveals a universal behavior violated by kinetically stable proteases.
    Jaswal SS; Truhlar SM; Dill KA; Agard DA
    J Mol Biol; 2005 Mar; 347(2):355-66. PubMed ID: 15740746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water as a conformational editor in protein folding.
    Sessions RB; Thomas GL; Parker MJ
    J Mol Biol; 2004 Oct; 343(4):1125-33. PubMed ID: 15476826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct measurement of barrier heights in protein folding.
    Naganathan AN; Sanchez-Ruiz JM; Muñoz V
    J Am Chem Soc; 2005 Dec; 127(51):17970-1. PubMed ID: 16366525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contact order, transition state placement and the refolding rates of single domain proteins.
    Plaxco KW; Simons KT; Baker D
    J Mol Biol; 1998 Apr; 277(4):985-94. PubMed ID: 9545386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of protein folding free energy barriers from calorimetric data by multi-model Bayesian analysis.
    Naganathan AN; Perez-Jimenez R; Muñoz V; Sanchez-Ruiz JM
    Phys Chem Chem Phys; 2011 Oct; 13(38):17064-76. PubMed ID: 21769353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correspondence between anomalous m- and DeltaCp-values in protein folding.
    Otzen DE; Oliveberg M
    Protein Sci; 2004 Dec; 13(12):3253-63. PubMed ID: 15557266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The barriers in the bimolecular and unimolecular folding reactions of the dimeric core domain of Escherichia coli Trp repressor are dominated by enthalpic contributions.
    Gloss LM; Matthews CR
    Biochemistry; 1998 Nov; 37(45):16000-10. PubMed ID: 9843407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.