BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 15893504)

  • 1. Modulation of hypoglossal motoneuron excitability by intracellular signal transduction cascades.
    Feldman JL; Neverova NV; Saywell SA
    Respir Physiol Neurobiol; 2005 Jul; 147(2-3):131-43. PubMed ID: 15893504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic modulation of inspiratory drive currents by protein kinase A and protein phosphatases in functionally active motoneurons.
    Bocchiaro CM; Saywell SA; Feldman JL
    J Neurosci; 2003 Feb; 23(4):1099-103. PubMed ID: 12598595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Episodic stimulation of alpha1-adrenoreceptors induces protein kinase C-dependent persistent changes in motoneuronal excitability.
    Neverova NV; Saywell SA; Nashold LJ; Mitchell GS; Feldman JL
    J Neurosci; 2007 Apr; 27(16):4435-42. PubMed ID: 17442828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein kinase G-dependent mechanisms modulate hypoglossal motoneuronal excitability and long-term facilitation.
    Saywell SA; Babiec WE; Neverova NV; Feldman JL
    J Physiol; 2010 Nov; 588(Pt 22):4431-9. PubMed ID: 20855434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic interactions of excitatory and inhibitory inputs in hypoglossal motoneurones: respiratory phasing and modulation by PKA.
    Saywell SA; Feldman JL
    J Physiol; 2004 Feb; 554(Pt 3):879-89. PubMed ID: 14660708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of hypoglossal motoneuron excitability by NK1 receptor activation in neonatal mice in vitro.
    Yasuda K; Robinson DM; Selvaratnam SR; Walsh CW; McMorland AJ; Funk GD
    J Physiol; 2001 Jul; 534(Pt. 2):447-64. PubMed ID: 11454963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic activity-independent persistent plasticity in endogenously active mammalian motoneurons.
    Bocchiaro CM; Feldman JL
    Proc Natl Acad Sci U S A; 2004 Mar; 101(12):4292-5. PubMed ID: 15024116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noradrenergic modulation of hypoglossal motoneuron excitability: developmental and putative state-dependent mechanisms.
    Funk GD; Zwicker JD; Selvaratnam R; Robinson DM
    Arch Ital Biol; 2011 Dec; 149(4):426-53. PubMed ID: 22205594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opiate-induced suppression of rat hypoglossal motoneuron activity and its reversal by ampakine therapy.
    Lorier AR; Funk GD; Greer JJ
    PLoS One; 2010 Jan; 5(1):e8766. PubMed ID: 20098731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclothiazide-induced persistent increase in respiratory-related activity in vitro.
    Babiec WE; Faull KF; Feldman JL
    J Physiol; 2012 Oct; 590(19):4897-915. PubMed ID: 22753547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pre- and postsynaptic modulation of glycinergic and gabaergic transmission by muscarinic receptors on rat hypoglossal motoneurons in vitro.
    Pagnotta SE; Lape R; Quitadamo C; Nistri A
    Neuroscience; 2005; 130(3):783-95. PubMed ID: 15590160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noradrenergic modulation of XII motoneuron inspiratory activity does not involve alpha2-receptor inhibition of the Ih current or presynaptic glutamate release.
    Adachi T; Robinson DM; Miles GB; Funk GD
    J Appl Physiol (1985); 2005 Apr; 98(4):1297-308. PubMed ID: 15579572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of group I metabotropic glutamate receptors enhances efficacy of glutamatergic inputs to neonatal rat hypoglossal motoneurons in vitro.
    Sharifullina E; Ostroumov K; Nistri A
    Eur J Neurosci; 2004 Sep; 20(5):1245-54. PubMed ID: 15341596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic control of motoneuron excitability in rodents: from months to milliseconds.
    Funk GD; Parkis MA; Selvaratnam SR; Robinson DM; Miles GB; Peebles KC
    Clin Exp Pharmacol Physiol; 2000; 27(1-2):120-5. PubMed ID: 10696540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Take Your PIC: motoneuronal persistent inward currents may be somatic as well as dendritic. focus on "facilitation of somatic calcium channels can evoke prolonged tail currents in rat hypoglossal motoneurons".
    Brownstone RM
    J Neurophysiol; 2007 Aug; 98(2):579-80. PubMed ID: 17522171
    [No Abstract]   [Full Text] [Related]  

  • 16. Modulation of AMPA currents by D(1)-like but not D(2)-like receptors in spinal motoneurons.
    Han P; Whelan PJ
    Neuroscience; 2009 Feb; 158(4):1699-707. PubMed ID: 19110039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of common excitatory and inhibitory inputs on motoneuron synchronization.
    Türker KS; Powers RK
    J Neurophysiol; 2001 Dec; 86(6):2807-22. PubMed ID: 11731538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of group I metabotropic glutamate receptors increases serine phosphorylation of GluR1 alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in the rat dorsal striatum.
    Ahn SM; Choe ES
    J Pharmacol Exp Ther; 2009 Jun; 329(3):1117-26. PubMed ID: 19258522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopaminergic enhancement of excitatory synaptic transmission in layer II entorhinal neurons is dependent on D₁-like receptor-mediated signaling.
    Glovaci I; Caruana DA; Chapman CA
    Neuroscience; 2014 Jan; 258():74-83. PubMed ID: 24220689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term intermittent hypoxia: reduced excitatory hypoglossal nerve output.
    Veasey SC; Zhan G; Fenik P; Pratico D
    Am J Respir Crit Care Med; 2004 Sep; 170(6):665-72. PubMed ID: 15229096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.