BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15893576)

  • 1. Feed-forward associative learning for volitional movement control.
    Fujita M
    Neurosci Res; 2005 Jun; 52(2):153-65. PubMed ID: 15893576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment.
    Ebadzadeh M; Tondu B; Darlot C
    Neuroscience; 2005; 133(1):29-49. PubMed ID: 15893629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning to predict the future: the cerebellum adapts feedforward movement control.
    Bastian AJ
    Curr Opin Neurobiol; 2006 Dec; 16(6):645-9. PubMed ID: 17071073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implications of different classes of sensorimotor disturbance for cerebellar-based motor learning models.
    Haith A; Vijayakumar S
    Biol Cybern; 2009 Jan; 100(1):81-95. PubMed ID: 18941774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual awareness and the cerebellum: possible role of decorrelation control.
    Dean P; Porrill J; Stone JV
    Prog Brain Res; 2004; 144():61-75. PubMed ID: 14650840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MODEM: a multi-agent hierarchical structure to model the human motor control system.
    Emadi Andani M; Bahrami F; Jabehdar Maralani P; Ijspeert AJ
    Biol Cybern; 2009 Dec; 101(5-6):361-77. PubMed ID: 19862548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracortical inhibition during volitional inhibition of prepared action.
    Coxon JP; Stinear CM; Byblow WD
    J Neurophysiol; 2006 Jun; 95(6):3371-83. PubMed ID: 16495356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensory prediction errors drive cerebellum-dependent adaptation of reaching.
    Tseng YW; Diedrichsen J; Krakauer JW; Shadmehr R; Bastian AJ
    J Neurophysiol; 2007 Jul; 98(1):54-62. PubMed ID: 17507504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning in a simple motor system.
    Broussard DM; Kassardjian CD
    Learn Mem; 2004; 11(2):127-36. PubMed ID: 15054127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the neural computations of arbitrary visuomotor learning through fMRI and associative learning theory.
    Brovelli A; Laksiri N; Nazarian B; Meunier M; Boussaoud D
    Cereb Cortex; 2008 Jul; 18(7):1485-95. PubMed ID: 18033767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hierarchical neural-network model for control and learning of voluntary movement.
    Kawato M; Furukawa K; Suzuki R
    Biol Cybern; 1987; 57(3):169-85. PubMed ID: 3676355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imitation: is cognitive neuroscience solving the correspondence problem?
    Brass M; Heyes C
    Trends Cogn Sci; 2005 Oct; 9(10):489-95. PubMed ID: 16126449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning and generation of goal-directed arm reaching from scratch.
    Kambara H; Kim K; Shin D; Sato M; Koike Y
    Neural Netw; 2009 May; 22(4):348-61. PubMed ID: 19121565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moving to a different beat.
    Miall RC; Ivry R
    Nat Neurosci; 2004 Oct; 7(10):1025-6. PubMed ID: 15452570
    [No Abstract]   [Full Text] [Related]  

  • 16. An internal model for acquisition and retention of motor learning during arm reaching.
    Lonini L; Dipietro L; Zollo L; Guglielmelli E; Krebs HI
    Neural Comput; 2009 Jul; 21(7):2009-27. PubMed ID: 19323640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal modifications during visuomotor association learning assessed by electric brain tomography.
    Praeg E; Esslen M; Lutz K; Jancke L
    Brain Topogr; 2006; 19(1-2):61-75. PubMed ID: 17136595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Use of the prompt identification principle in controlling complex motor systems (speed control)].
    Penev GD; Tairov OP
    Biofizika; 1979; 24(3):533-9. PubMed ID: 465561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding of temporal intervals from cortical ensemble activity.
    Lebedev MA; O'Doherty JE; Nicolelis MA
    J Neurophysiol; 2008 Jan; 99(1):166-86. PubMed ID: 18003881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental regulation of cognitive abilities: modified composition of a molecular switch turns on associative learning.
    Dumas TC
    Prog Neurobiol; 2005 Jun; 76(3):189-211. PubMed ID: 16181726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.