These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 15893651)
1. Entrainment by a palatable meal induces food-anticipatory activity and c-Fos expression in reward-related areas of the brain. Mendoza J; Angeles-Castellanos M; Escobar C Neuroscience; 2005; 133(1):293-303. PubMed ID: 15893651 [TBL] [Abstract][Full Text] [Related]
2. A daily palatable meal without food deprivation entrains the suprachiasmatic nucleus of rats. Mendoza J; Angeles-Castellanos M; Escobar C Eur J Neurosci; 2005 Dec; 22(11):2855-62. PubMed ID: 16324120 [TBL] [Abstract][Full Text] [Related]
3. Differential regulation of the expression of Period2 protein in the limbic forebrain and dorsomedial hypothalamus by daily limited access to highly palatable food in food-deprived and free-fed rats. Verwey M; Khoja Z; Stewart J; Amir S Neuroscience; 2007 Jun; 147(2):277-85. PubMed ID: 17544223 [TBL] [Abstract][Full Text] [Related]
4. Sucrose modifies c-fos mRNA expression in the brain of rats maintained on feeding schedules. Mitra A; Lenglos C; Martin J; Mbende N; Gagné A; Timofeeva E Neuroscience; 2011 Sep; 192():459-74. PubMed ID: 21718761 [TBL] [Abstract][Full Text] [Related]
5. Unpredictable feeding schedules unmask a system for daily resetting of behavioural and metabolic food entrainment. Escobar C; Martínez-Merlos MT; Angeles-Castellanos M; del Carmen Miñana M; Buijs RM Eur J Neurosci; 2007 Nov; 26(10):2804-14. PubMed ID: 18001277 [TBL] [Abstract][Full Text] [Related]
6. Expectancy for food or expectancy for chocolate reveals timing systems for metabolism and reward. Angeles-Castellanos M; Salgado-Delgado R; Rodríguez K; Buijs RM; Escobar C Neuroscience; 2008 Jul; 155(1):297-307. PubMed ID: 18585440 [TBL] [Abstract][Full Text] [Related]
7. Restricted feeding schedules phase shift daily rhythms of c-Fos and protein Per1 immunoreactivity in corticolimbic regions in rats. Angeles-Castellanos M; Mendoza J; Escobar C Neuroscience; 2007 Jan; 144(1):344-55. PubMed ID: 17045749 [TBL] [Abstract][Full Text] [Related]
8. Differential role of the accumbens Shell and Core subterritories in food-entrained rhythms of rats. Mendoza J; Angeles-Castellanos M; Escobar C Behav Brain Res; 2005 Mar; 158(1):133-42. PubMed ID: 15680201 [TBL] [Abstract][Full Text] [Related]
9. Food-entrained patterns in orexin cells reveal subregion differential activation. Jiménez A; Caba M; Escobar C Brain Res; 2013 Jun; 1513():41-50. PubMed ID: 23558307 [TBL] [Abstract][Full Text] [Related]
10. The suprachiasmatic nucleus participates in food entrainment: a lesion study. Angeles-Castellanos M; Salgado-Delgado R; Rodriguez K; Buijs RM; Escobar C Neuroscience; 2010 Feb; 165(4):1115-26. PubMed ID: 20004704 [TBL] [Abstract][Full Text] [Related]
11. Food-reward signalling in the suprachiasmatic clock. Mendoza J; Clesse D; Pévet P; Challet E J Neurochem; 2010 Mar; 112(6):1489-99. PubMed ID: 20067576 [TBL] [Abstract][Full Text] [Related]
12. Bidirectional interactions between the circadian and reward systems: is restricted food access a unique zeitgeber? Webb IC; Baltazar RM; Lehman MN; Coolen LM Eur J Neurosci; 2009 Nov; 30(9):1739-48. PubMed ID: 19878278 [TBL] [Abstract][Full Text] [Related]
13. The dynamics of neuronal activation during food anticipation and feeding in the brain of food-entrained rats. Poulin AM; Timofeeva E Brain Res; 2008 Aug; 1227():128-41. PubMed ID: 18602903 [TBL] [Abstract][Full Text] [Related]
14. Circadian discrimination of reward: evidence for simultaneous yet separable food- and drug-entrained rhythms in the rat. Jansen HT; Sergeeva A; Stark G; Sorg BA Chronobiol Int; 2012 May; 29(4):454-68. PubMed ID: 22475541 [TBL] [Abstract][Full Text] [Related]
15. Effects of the D(3) dopamine receptor antagonist, U99194A, on brain stimulation and d-amphetamine reward, motor activity, and c-fos expression in ad libitum fed and food-restricted rats. Carr KD; Yamamoto N; Omura M; Cabeza de Vaca S; Krahne L Psychopharmacology (Berl); 2002 Aug; 163(1):76-84. PubMed ID: 12185403 [TBL] [Abstract][Full Text] [Related]
16. Main and accessory olfactory bulbs and their projections in the brain anticipate feeding in food-entrained rats. Caba M; Pabello M; Moreno ML; Meza E Chronobiol Int; 2014 Oct; 31(8):869-77. PubMed ID: 24915133 [TBL] [Abstract][Full Text] [Related]
17. Food entrainment modifies the c-Fos expression pattern in brain stem nuclei of rats. Angeles-Castellanos M; Mendoza J; Díaz-Muñoz M; Escobar C Am J Physiol Regul Integr Comp Physiol; 2005 Mar; 288(3):R678-84. PubMed ID: 15550615 [TBL] [Abstract][Full Text] [Related]
18. Region-specific modulation of PER2 expression in the limbic forebrain and hypothalamus by nighttime restricted feeding in rats. Verwey M; Khoja Z; Stewart J; Amir S Neurosci Lett; 2008 Jul; 440(1):54-8. PubMed ID: 18541376 [TBL] [Abstract][Full Text] [Related]
19. Progressive anticipation in behavior and brain activation of rats exposed to scheduled daily palatable food. Blancas A; González-García SD; Rodríguez K; Escobar C Neuroscience; 2014 Dec; 281():44-53. PubMed ID: 25255933 [TBL] [Abstract][Full Text] [Related]
20. Dissociation between adipose tissue signals, behavior and the food-entrained oscillator. Martínez-Merlos MT; Angeles-Castellanos M; Díaz-Muñoz M; Aguilar-Roblero R; Mendoza J; Escobar C J Endocrinol; 2004 Apr; 181(1):53-63. PubMed ID: 15072566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]