BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 1589391)

  • 21. Metabolism and absorption enhancement of methionine enkephalin in human nasal epithelium.
    Agu RU; Vu Dang H; Jorissen M; Kinget R; Verbeke N
    Peptides; 2004 Apr; 25(4):563-9. PubMed ID: 15165710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nasal delivery of high molecular weight drugs.
    Ozsoy Y; Gungor S; Cevher E
    Molecules; 2009 Sep; 14(9):3754-79. PubMed ID: 19783956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent progress in protein and peptide delivery by noninvasive routes.
    Wearley LL
    Crit Rev Ther Drug Carrier Syst; 1991; 8(4):331-94. PubMed ID: 1769066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins.
    Bernkop-Schnürch A
    J Control Release; 1998 Mar; 52(1-2):1-16. PubMed ID: 9685931
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Review: clinical opportunities provided by the nasal administration of peptides.
    Harris AS
    J Drug Target; 1993; 1(2):101-16. PubMed ID: 8069548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrolysis of leucine enkephalin in the nasal cavity of the rat--a possible factor in the low bioavailability of nasally administered peptides.
    Hussain A; Faraj J; Aramaki Y; Truelove JE
    Biochem Biophys Res Commun; 1985 Dec; 133(3):923-8. PubMed ID: 4084310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intranasal drug delivery for systemic medications.
    Chien YW; Chang SF
    Crit Rev Ther Drug Carrier Syst; 1987; 4(2):67-194. PubMed ID: 3319200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of RPMI 2650 as a cell model to evaluate solid formulations for intranasal delivery of drugs.
    Gonçalves VSS; Matias AA; Poejo J; Serra AT; Duarte CMM
    Int J Pharm; 2016 Dec; 515(1-2):1-10. PubMed ID: 27702697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bile salt-fatty acid mixed micelles as nasal absorption promoters of peptides. II. In vivo nasal absorption of insulin in rats and effects of mixed micelles on the morphological integrity of the nasal mucosa.
    Tengamnuay P; Mitra AK
    Pharm Res; 1990 Apr; 7(4):370-5. PubMed ID: 2194199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validation of excised bovine nasal mucosa as in vitro model to study drug transport and metabolic pathways in nasal epithelium.
    Schmidt MC; Simmen D; Hilbe M; Boderke P; Ditzinger G; Sandow J; Lang S; Rubas W; Merkle HP
    J Pharm Sci; 2000 Mar; 89(3):396-407. PubMed ID: 10707019
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of lymphatic transport in enhancing oral protein and peptide drug delivery.
    Wasan KM
    Drug Dev Ind Pharm; 2002 Oct; 28(9):1047-58. PubMed ID: 12455465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Primary Air-Liquid Interface Culture of Nasal Epithelium for Nasal Drug Delivery.
    Ong HX; Jackson CL; Cole JL; Lackie PM; Traini D; Young PM; Lucas J; Conway J
    Mol Pharm; 2016 Jul; 13(7):2242-52. PubMed ID: 27223825
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nasal route: an alternative approach for antiemetic drug delivery.
    Ozsoy Y; Güngör S
    Expert Opin Drug Deliv; 2011 Nov; 8(11):1439-53. PubMed ID: 22004793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of surfactants and protease inhibitors on nasal absorption of recombinant human granulocyte colony-stimulating factor (rhG-CSF) in rats.
    Machida M; Sano K; Arakawa M; Hayashi M; Awazu S
    Biol Pharm Bull; 1994 Oct; 17(10):1375-8. PubMed ID: 7533020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhaled insulin-intrapulmonary, intranasal, and other routes of administration: mechanisms of action.
    Henkin RI
    Nutrition; 2010 Jan; 26(1):33-9. PubMed ID: 20005465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Absorption of peptides and proteins from the respiratory tract and the potential for development of locally administered vaccine.
    O'Hagan DT; Illum L
    Crit Rev Ther Drug Carrier Syst; 1990; 7(1):35-97. PubMed ID: 2257636
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intranasal Drug Delivery: A Non-Invasive Approach for the Better Delivery of Neurotherapeutics.
    Kumar H; Mishra G; Sharma AK; Gothwal A; Kesharwani P; Gupta U
    Pharm Nanotechnol; 2017; 5(3):203-214. PubMed ID: 28521670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficiency of cell-penetrating peptides on the nasal and intestinal absorption of therapeutic peptides and proteins.
    Khafagy el-S; Morishita M; Kamei N; Eda Y; Ikeno Y; Takayama K
    Int J Pharm; 2009 Oct; 381(1):49-55. PubMed ID: 19646515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mucoadhesive in situ nasal gelling drug delivery systems for modulated drug delivery.
    Singh RM; Kumar A; Pathak K
    Expert Opin Drug Deliv; 2013 Jan; 10(1):115-30. PubMed ID: 23199072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Permeation studies and histological examination of sheep nasal mucosa following administration of different nasal formulations with or without absorption enhancers.
    Karasulu E; Yavasoğlu A; Evrensanal Z; Uyanikgil Y; Karasulu HY
    Drug Deliv; 2008 May; 15(4):219-25. PubMed ID: 18446567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.