These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Myofibrillar protein turnover: the proteasome and the calpains. Goll DE; Neti G; Mares SW; Thompson VF J Anim Sci; 2008 Apr; 86(14 Suppl):E19-35. PubMed ID: 17709792 [TBL] [Abstract][Full Text] [Related]
6. Activation of Ca(2+)-dependent proteolysis in skeletal muscle and heart in cancer cachexia. Costelli P; De Tullio R; Baccino FM; Melloni E Br J Cancer; 2001 Apr; 84(7):946-50. PubMed ID: 11286475 [TBL] [Abstract][Full Text] [Related]
7. Calpains in muscle wasting. Bartoli M; Richard I Int J Biochem Cell Biol; 2005 Oct; 37(10):2115-33. PubMed ID: 16125114 [TBL] [Abstract][Full Text] [Related]
8. Cellular signals activating muscle proteolysis in chronic kidney disease: a two-stage process. Du J; Hu Z; Mitch WE Int J Biochem Cell Biol; 2005 Oct; 37(10):2147-55. PubMed ID: 15982920 [TBL] [Abstract][Full Text] [Related]
9. Burn injury stimulates multiple proteolytic pathways in skeletal muscle, including the ubiquitin-energy-dependent pathway. Fang CH; Tiao G; James H; Ogle C; Fischer JE; Hasselgren PO J Am Coll Surg; 1995 Feb; 180(2):161-70. PubMed ID: 7850049 [TBL] [Abstract][Full Text] [Related]
10. The ubiquitin-proteasome pathway as a therapeutic target for muscle wasting. Tisdale MJ J Support Oncol; 2005; 3(3):209-17. PubMed ID: 15915823 [TBL] [Abstract][Full Text] [Related]
11. Calcium-dependent proteolytic system and muscle dysfunctions: a possible role of calpains in sarcopenia. Dargelos E; Poussard S; Brulé C; Daury L; Cottin P Biochimie; 2008 Feb; 90(2):359-68. PubMed ID: 17881114 [TBL] [Abstract][Full Text] [Related]
12. Novel aspects on the regulation of muscle wasting in sepsis. Hasselgren PO; Menconi MJ; Fareed MU; Yang H; Wei W; Evenson A Int J Biochem Cell Biol; 2005 Oct; 37(10):2156-68. PubMed ID: 16125115 [TBL] [Abstract][Full Text] [Related]
13. Increased ATP-ubiquitin-dependent proteolysis in skeletal muscles of tumor-bearing rats. Temparis S; Asensi M; Taillandier D; Aurousseau E; Larbaud D; Obled A; Béchet D; Ferrara M; Estrela JM; Attaix D Cancer Res; 1994 Nov; 54(21):5568-73. PubMed ID: 7923198 [TBL] [Abstract][Full Text] [Related]
14. Treatment of cultured myotubes with the calcium ionophore A23187 increases proteasome activity via a CaMK II-caspase-calpain-dependent mechanism. Menconi MJ; Wei W; Yang H; Wray CJ; Hasselgren PO Surgery; 2004 Aug; 136(2):135-42. PubMed ID: 15300172 [TBL] [Abstract][Full Text] [Related]
15. Ca2+ activation of diffusible and bound pools of mu-calpain in rat skeletal muscle. Murphy RM; Verburg E; Lamb GD J Physiol; 2006 Oct; 576(Pt 2):595-612. PubMed ID: 16857710 [TBL] [Abstract][Full Text] [Related]
16. The role of ubiquitin-proteasome-dependent proteolysis in the remodelling of skeletal muscle. Taillandier D; Combaret L; Pouch MN; Samuels SE; Béchet D; Attaix D Proc Nutr Soc; 2004 May; 63(2):357-61. PubMed ID: 15294055 [TBL] [Abstract][Full Text] [Related]
17. Molecular mechanisms activating muscle protein degradation in chronic kidney disease and other catabolic conditions. Du J; Hu Z; Mitch WE Eur J Clin Invest; 2005 Mar; 35(3):157-63. PubMed ID: 15733069 [TBL] [Abstract][Full Text] [Related]