These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 15893953)
1. Cerebrovascular segmentation from TOF using stochastic models. Hassouna MS; Farag AA; Hushek S; Moriarty T Med Image Anal; 2006 Feb; 10(1):2-18. PubMed ID: 15893953 [TBL] [Abstract][Full Text] [Related]
2. A vessel segmentation method for multi-modality angiographic images based on multi-scale filtering and statistical models. Lu P; Xia J; Li Z; Xiong J; Yang J; Zhou S; Wang L; Chen M; Wang C Biomed Eng Online; 2016 Nov; 15(1):120. PubMed ID: 27825346 [TBL] [Abstract][Full Text] [Related]
3. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. Zhang Y; Brady M; Smith S IEEE Trans Med Imaging; 2001 Jan; 20(1):45-57. PubMed ID: 11293691 [TBL] [Abstract][Full Text] [Related]
4. Statistical approach to segmentation of single-channel cerebral MR images. Rajapakse JC; Giedd JN; Rapoport JL IEEE Trans Med Imaging; 1997 Apr; 16(2):176-86. PubMed ID: 9101327 [TBL] [Abstract][Full Text] [Related]
5. Intracranial vessel segmentation from time-of-flight MRA using pre-processing of the MIP Z-buffer: accuracy of the ZBS algorithm. Chapman BE; Stapelton JO; Parker DL Med Image Anal; 2004 Jun; 8(2):113-26. PubMed ID: 15063861 [TBL] [Abstract][Full Text] [Related]
6. Agentification of Markov model-based segmentation: application to magnetic resonance brain scans. Scherrer B; Dojat M; Forbes F; Garbay C Artif Intell Med; 2009 May; 46(1):81-95. PubMed ID: 18929472 [TBL] [Abstract][Full Text] [Related]
7. An adaptive segmentation algorithm for time-of-flight MRA data. Wilson DL; Noble JA IEEE Trans Med Imaging; 1999 Oct; 18(10):938-45. PubMed ID: 10628953 [TBL] [Abstract][Full Text] [Related]
14. A stochastic model for studying the laminar structure of cortex from MRI. Barta P; Miller MI; Qiu A IEEE Trans Med Imaging; 2005 Jun; 24(6):728-42. PubMed ID: 15957597 [TBL] [Abstract][Full Text] [Related]
16. Precise segmentation of 3-D magnetic resonance angiography. El-Baz A; Elnakib A; Khalifa F; El-Ghar MA; McClure P; Soliman A; Gimel'farb G IEEE Trans Biomed Eng; 2012 Jul; 59(7):2019-29. PubMed ID: 22547453 [TBL] [Abstract][Full Text] [Related]
17. 3 T contrast-enhanced magnetic resonance angiography for evaluation of the intracranial arteries: comparison with time-of-flight magnetic resonance angiography and multislice computed tomography angiography. Villablanca JP; Nael K; Habibi R; Nael A; Laub G; Finn JP Invest Radiol; 2006 Nov; 41(11):799-805. PubMed ID: 17035870 [TBL] [Abstract][Full Text] [Related]
18. Segmentation of brain magnetic resonance angiography images based on MAP-MRF with multi-pattern neighborhood system and approximation of regularization coefficient. Zhou S; Chen W; Jia F; Hu Q; Xie Y; Chen M; Wu J Med Image Anal; 2013 Dec; 17(8):1220-35. PubMed ID: 24077483 [TBL] [Abstract][Full Text] [Related]
19. 3D TOF MRA of intracranial aneurysms at 1.5 T and 3 T: influence of matrix, parallel imaging, and acquisition time on image quality - a vascular phantom study. Hiai Y; Kakeda S; Sato T; Ohnari N; Moriya J; Kitajima M; Hirai T; Yamashita Y; Korogi Y Acad Radiol; 2008 May; 15(5):635-40. PubMed ID: 18423321 [TBL] [Abstract][Full Text] [Related]
20. Magnetic resonance image tissue classification using a partial volume model. Shattuck DW; Sandor-Leahy SR; Schaper KA; Rottenberg DA; Leahy RM Neuroimage; 2001 May; 13(5):856-76. PubMed ID: 11304082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]