These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 1589427)
21. Isolation of merozoite rhoptries, identification of novel rhoptry-associated proteins from Plasmodium yoelii, P. chabaudi, P. berghei, and conserved interspecies reactivity of organelles and proteins with P. falciparum rhoptry-specific antibodies. Sam-Yellowe TY; Del Rio RA; Fujioka H; Aikawa M; Yang JC; Yakubu Z Exp Parasitol; 1998 Jul; 89(3):271-84. PubMed ID: 9676705 [TBL] [Abstract][Full Text] [Related]
22. The role of the Maurer's clefts in protein transport in Plasmodium falciparum. Sam-Yellowe TY Trends Parasitol; 2009 Jun; 25(6):277-84. PubMed ID: 19442584 [TBL] [Abstract][Full Text] [Related]
23. Modification of host cell membrane lipid composition by the intra-erythrocytic human malaria parasite Plasmodium falciparum. Hsiao LL; Howard RJ; Aikawa M; Taraschi TF Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):121-32. PubMed ID: 2001227 [TBL] [Abstract][Full Text] [Related]
24. A megadalton protein (Pc2500) is present during the intraerythrocytic development of P. chabaudi. Garcia CR; Abrahamson P Biochem Mol Biol Int; 1995 Aug; 36(5):983-9. PubMed ID: 7581015 [TBL] [Abstract][Full Text] [Related]
25. Testosterone-induced changes in phosphatidylcholine molecular species composition of Plasmodium chabaudi-infected erythrocytes. Fiebig S; Simões AP; Wunderlich F; op den Kamp JA Parasitology; 1993 Dec; 107 ( Pt 5)():465-9. PubMed ID: 8295785 [TBL] [Abstract][Full Text] [Related]
26. Plasmodium vivax and Plasmodium chabaudi: intraerythrocytic traffic of antigenically homologous proteins involves a brefeldin A-sensitive secretory pathway. Bracho C; Dunia I; Romano M; Benedetti EL; Perez HA Eur J Cell Biol; 2001 Feb; 80(2):164-70. PubMed ID: 11302521 [TBL] [Abstract][Full Text] [Related]
27. Evidence for vesicle-mediated trafficking of parasite proteins to the host cell cytosol and erythrocyte surface membrane in Plasmodium falciparum infected erythrocytes. Trelka DP; Schneider TG; Reeder JC; Taraschi TF Mol Biochem Parasitol; 2000 Feb; 106(1):131-45. PubMed ID: 10743617 [TBL] [Abstract][Full Text] [Related]
28. The use of percoll gradients, elutriator rotor elution, and mithramycin staining for the isolation and identification of intraerythrocytic stages of plasmodium berghei. Rüssmann L; Jung A; Heidrich HG Z Parasitenkd; 1982; 66(3):273-80. PubMed ID: 6177116 [TBL] [Abstract][Full Text] [Related]
29. A simple method for separation of uninfected erythrocytes from those infected with Plasmodium berghei and for isolation of artificially released parasites. Nillni EA; Londner MV; Spira DT Z Parasitenkd; 1981; 64(3):279-84. PubMed ID: 6261470 [TBL] [Abstract][Full Text] [Related]
30. Trafficking determinants for PfEMP3 export and assembly under the Plasmodium falciparum-infected red blood cell membrane. Knuepfer E; Rug M; Klonis N; Tilley L; Cowman AF Mol Microbiol; 2005 Nov; 58(4):1039-53. PubMed ID: 16262789 [TBL] [Abstract][Full Text] [Related]
31. Plasmodium berghei, P. chabaudi, and P. falciparum: similarities in phosphoproteins and protein kinase activities and their stage specific expression. Wiser MF; Plitt B Exp Parasitol; 1987 Dec; 64(3):328-35. PubMed ID: 3315732 [TBL] [Abstract][Full Text] [Related]
32. Malarial proteins that interact with the erythrocyte membrane and cytoskeleton. Wiser MF Exp Parasitol; 1991 Nov; 73(4):515-23. PubMed ID: 1959577 [TBL] [Abstract][Full Text] [Related]
33. Alkali-extraction of membranes from mouse erythrocytes infected with Plasmodium berghei. Gerritsen WJ; Ramji BD Comp Biochem Physiol B; 1983; 76(4):875-80. PubMed ID: 6362976 [TBL] [Abstract][Full Text] [Related]
34. A new method for isolation of the intraerythrocytic stages of Plasmodium and Babesia from their host cells. Sobolewski B; Mackenstedt U; Mehlhorn H Parasitol Res; 1993; 79(1):33-41. PubMed ID: 8469669 [TBL] [Abstract][Full Text] [Related]
35. Fractionation of Plasmodium chabaudi-infected erythrocytes into parasites and ghosts. Wunderlich F; Schillinger G; Helwig M Z Parasitenkd; 1985; 71(4):545-51. PubMed ID: 2992180 [TBL] [Abstract][Full Text] [Related]
36. Two putative protein export regulators promote Plasmodium blood stage development in vivo. Matz JM; Matuschewski K; Kooij TW Mol Biochem Parasitol; 2013 Sep; 191(1):44-52. PubMed ID: 24076174 [TBL] [Abstract][Full Text] [Related]
38. Plasmodium falciparum histidine-rich protein 1 associates with the band 3 binding domain of ankyrin in the infected red cell membrane. Magowan C; Nunomura W; Waller KL; Yeung J; Liang J; Van Dort H; Low PS; Coppel RL; Mohandas N Biochim Biophys Acta; 2000 Nov; 1502(3):461-70. PubMed ID: 11068188 [TBL] [Abstract][Full Text] [Related]
39. Membrane specific mapping and colocalization of malarial and host skeletal proteins in the Plasmodium falciparum infected erythrocyte by dual-color near-field scanning optical microscopy. Enderle T; Ha T; Ogletree DF; Chemla DS; Magowan C; Weiss S Proc Natl Acad Sci U S A; 1997 Jan; 94(2):520-5. PubMed ID: 9012816 [TBL] [Abstract][Full Text] [Related]