BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 15894322)

  • 1. Problematic sites of third body embedment in polyethylene for total hip wear acceleration.
    Lundberg HJ; Stewart KJ; Pedersen DR; Callaghan JJ; Brown TD
    J Biomech; 2006; 39(7):1208-16. PubMed ID: 15894322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element simulation of early creep and wear in total hip arthroplasty.
    Bevill SL; Bevill GR; Penmetsa JR; Petrella AJ; Rullkoetter PJ
    J Biomech; 2005 Dec; 38(12):2365-74. PubMed ID: 16214484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primary stability of an anatomical cementless hip stem: a statistical analysis.
    Viceconti M; Brusi G; Pancanti A; Cristofolini L
    J Biomech; 2006; 39(7):1169-79. PubMed ID: 15927191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetically critical sites of femoral head roughening for wear rate acceleration in total hip arthroplasty.
    Lundberg HJ; Stewart KJ; Callaghan JJ; Brown TD
    Clin Orthop Relat Res; 2005 Jan; (430):89-93. PubMed ID: 15662308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical biomechanics of wear in total hip arthroplasty.
    Callaghan JJ; Pedersen DR; Johnston RC; Brown TD
    Iowa Orthop J; 2003; 23():1-12. PubMed ID: 14575243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of polyethylene creep behavior on wear in total hip arthroplasty.
    Penmetsa JR; Laz PJ; Petrella AJ; Rullkoetter PJ
    J Orthop Res; 2006 Mar; 24(3):422-7. PubMed ID: 16479600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method of quantification of stress shielding in the proximal femur using hierarchical computational modeling.
    Be'ery-Lipperman M; Gefen A
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):35-44. PubMed ID: 16880155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis of shear stresses at the implant-bone interface of an acetabular press-fit cup during impingement.
    Voigt C; Klöhn C; Bader R; von Salis-Soglio G; Scholz R
    Biomed Tech (Berl); 2007 Apr; 52(2):208-15. PubMed ID: 17408381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss in mechanical contact of cementless acetabular prostheses due to post-operative weight bearing: a biomechanical model.
    Bellini CM; Galbusera F; Ceroni RG; Raimondi MT
    Med Eng Phys; 2007 Mar; 29(2):175-81. PubMed ID: 16569508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local head roughening as a factor contributing to variability of total hip wear: a finite element analysis.
    Brown TD; Stewart KJ; Nieman JC; Pedersen DR; Callaghan JJ
    J Biomech Eng; 2002 Dec; 124(6):691-8. PubMed ID: 12596637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design factors influencing performance of constrained acetabular liners: finite element characterization.
    Bouchard SM; Stewart KJ; Pedersen DR; Callaghan JJ; Brown TD
    J Biomech; 2006; 39(5):885-93. PubMed ID: 16488227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonidentical and outlier duty cycles as factors accelerating UHMWPE wear in THA: a finite element exploration.
    Lundberg HJ; Stewart KJ; Pedersen DR; Callaghan JJ; Brown TD
    J Orthop Res; 2007 Jan; 25(1):30-43. PubMed ID: 17019701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of implant design parameters on fluid convection, potentiating third-body debris ingress into the bearing surface during THA impingement/subluxation.
    Lundberg HJ; Pedersen DR; Baer TE; Muste M; Callaghan JJ; Brown TD
    J Biomech; 2007; 40(8):1676-85. PubMed ID: 17400230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust design for acetabular cup stability accounting for patient and surgical variability.
    Ong KL; Santner TJ; Bartel DL
    J Biomech Eng; 2008 Jun; 130(3):031001. PubMed ID: 18532850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of shape and sliding distance of femoral head movement loci on the wear of acetabular cups in total hip arthroplasty.
    Bennett D; Orr JF; Beverland DE; Baker R
    Proc Inst Mech Eng H; 2002; 216(6):393-402. PubMed ID: 12502003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Total hip wear assessment: a comparison between computational and in vitro wear assessment techniques using ISO 14242 loading and kinematics.
    Matsoukas G; Willing R; Kim IY
    J Biomech Eng; 2009 Apr; 131(4):041011. PubMed ID: 19275440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of femoral head size on impingement, dislocation and stress distribution in total hip replacement.
    Kluess D; Martin H; Mittelmeier W; Schmitz KP; Bader R
    Med Eng Phys; 2007 May; 29(4):465-71. PubMed ID: 16901743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association of third body embedment with rim damage in retrieved acetabular liners.
    Lundberg HJ; Liu SS; Callaghan JJ; Pedersen DR; O'Rourke MR; Goetz DD; Vittetoe DA; Clohisy JC; Brown TD
    Clin Orthop Relat Res; 2007 Dec; 465():133-9. PubMed ID: 18090471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-gradient cross-linked polyethylene acetabular cups: oxidation resistance and wear against smooth and rough femoral balls.
    Shen FW; McKellop H
    Clin Orthop Relat Res; 2005 Jan; (430):80-8. PubMed ID: 15662307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometric element analysis of fretting in a model of a modular femoral component of a hip implant.
    Lewis G
    Biomed Mater Eng; 2004; 14(1):43-51. PubMed ID: 14757952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.