BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 15894350)

  • 41. Invertebrate mercury bioaccumulation in permanent, seasonal, and flooded rice wetlands within California's Central Valley.
    Ackerman JT; Miles AK; Eagles-Smith CA
    Sci Total Environ; 2010 Jan; 408(3):666-71. PubMed ID: 19880160
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Methylmercury input to the Mississippi River from a large metropolitan wastewater treatment plant.
    Balogh SJ; Nollet YH
    Sci Total Environ; 2008 Nov; 406(1-2):145-53. PubMed ID: 18768210
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Temporal changes in the distribution, methylation, and bioaccumulation of newly deposited mercury in an aquatic ecosystem.
    Orihel DM; Paterson MJ; Blanchfield PJ; Bodaly RA; Gilmour CC; Hintelmann H
    Environ Pollut; 2008 Jul; 154(1):77-88. PubMed ID: 18272273
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mercury exposure in the freshwater tilapia Oreochromis niloticus.
    Wang R; Wong MH; Wang WX
    Environ Pollut; 2010 Aug; 158(8):2694-701. PubMed ID: 20493602
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of physiochemical and watershed characteristics on mercury concentration in Walleye, Sander vitreus, M.
    Hayer CA; Chipps SR; Stone JJ
    Bull Environ Contam Toxicol; 2011 Feb; 86(2):163-7. PubMed ID: 21152888
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Climate induced thermocline change has an effect on the methyl mercury cycle in small boreal lakes.
    Verta M; Salo S; Korhonen M; Porvari P; Paloheimo A; Munthe J
    Sci Total Environ; 2010 Aug; 408(17):3639-47. PubMed ID: 20595057
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biomonitoring of mercury in polluted coastal area using transplanted mussels.
    Kljaković-Gaspić Z; Odzak N; Ujević I; Zvonarić T; Horvat M; Barić A
    Sci Total Environ; 2006 Sep; 368(1):199-209. PubMed ID: 16266737
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Concentrations of methylmercury in invertebrates from wetlands of the Prairie Pothole Region of North America.
    Bates LM; Hall BD
    Environ Pollut; 2012 Jan; 160(1):153-60. PubMed ID: 22035939
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Determination of mercury methylation potentials in the water column of lakes across Canada.
    Eckley CS; Hintelmann H
    Sci Total Environ; 2006 Sep; 368(1):111-25. PubMed ID: 16216310
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Methylmercury and dissolved organic carbon relationships in a wetland-rich watershed impacted by elevated sulfate from mining.
    Berndt ME; Bavin TK
    Environ Pollut; 2012 Feb; 161():321-7. PubMed ID: 21705118
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Watershed influences on mercury in tributaries to Lake Ontario.
    Denkenberger JS; Fakhraei H; Branfireun B; Montesdeoca M; Driscoll CT
    Ecotoxicology; 2020 Dec; 29(10):1614-1626. PubMed ID: 31925621
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mercury methylation and the microbial consortium in periphyton of tropical macrophytes: effect of different inhibitors.
    Correia RR; Miranda MR; Guimarães JR
    Environ Res; 2012 Jan; 112():86-91. PubMed ID: 22115392
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Elevated mercury concentrations in fish in lakes in the Mackenzie River Basin: the role of physical, chemical, and biological factors.
    Evans MS; Lockhart WL; Doetzel L; Low G; Muir D; Kidd K; Stephens G; Delaronde J
    Sci Total Environ; 2005 Dec; 351-352():479-500. PubMed ID: 16183101
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The impact of eutrophication on the biogeochemical cycling of mercury species in a reservoir: a case study from Hongfeng Reservoir, Guizhou, China.
    He T; Feng X; Guo Y; Qiu G; Li Z; Liang L; Lu J
    Environ Pollut; 2008 Jul; 154(1):56-67. PubMed ID: 18158204
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mercury, polybrominated diphenyl ether, organochlorine pesticide, and polychlorinated biphenyl concentrations in fish from lakes along an elevation transect in the French Pyrénées.
    Blais JM; Charpentié S; Pick F; Kimpe LE; St Amand A; Regnault-Roger C
    Ecotoxicol Environ Saf; 2006 Jan; 63(1):91-9. PubMed ID: 16253327
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mercury concentrations in landlocked Arctic char (Salvelinus alpinus) from the Canadian Arctic. Part I: insights from trophic relationships in 18 lakes.
    Gantner N; Power M; Iqaluk D; Meili M; Borg H; Sundbom M; Solomon KR; Lawson G; Muir DC
    Environ Toxicol Chem; 2010 Mar; 29(3):621-32. PubMed ID: 20821487
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mercury dynamics in groundwater across three distinct riparian zone types of the US Midwest.
    Vidon PG; Mitchell CP; Jacinthe PA; Baker ME; Liu X; Fisher KR
    Environ Sci Process Impacts; 2013 Oct; 15(11):2131-41. PubMed ID: 24113840
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mercury distribution across 14 U.S. forests. Part II: Patterns of methyl mercury concentrations and areal mass of total and methyl mercury.
    Obrist D
    Environ Sci Technol; 2012 Jun; 46(11):5921-30. PubMed ID: 22519552
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biostrome communities and mercury and selenium bioaccumulation in the Great Salt Lake (Utah, USA).
    Wurtsbaugh WA; Gardberg J; Izdepski C
    Sci Total Environ; 2011 Sep; 409(20):4425-34. PubMed ID: 21835437
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The burning question: does burning before flooding lower methyl mercury production and bioaccumulation?
    Mailman M; Bodaly RA
    Sci Total Environ; 2006 Sep; 368(1):407-17. PubMed ID: 16263153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.