These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 15894714)
41. Overexpression of the clpP 5'-untranslated region in a chimeric context causes a mutant phenotype, suggesting competition for a clpP-specific RNA maturation factor in tobacco chloroplasts. Kuroda H; Maliga P Plant Physiol; 2002 Aug; 129(4):1600-6. PubMed ID: 12177472 [TBL] [Abstract][Full Text] [Related]
42. Plastid DNA in the nucleus: new genes for old. Rousseau-Gueutin M; Ayliffe MA; Timmis JN Plant Signal Behav; 2012 Feb; 7(2):269-72. PubMed ID: 22415049 [TBL] [Abstract][Full Text] [Related]
43. Identification of critical nucleotide positions for plastid RNA editing site recognition. Bock R; Hermann M; Fuchs M RNA; 1997 Oct; 3(10):1194-200. PubMed ID: 9326494 [TBL] [Abstract][Full Text] [Related]
44. Organellar transcripts dominate the cellular mRNA pool across plants of varying ploidy levels. Forsythe ES; Grover CE; Miller ER; Conover JL; Arick MA; Chavarro MCF; Leal-Bertioli SCM; Peterson DG; Sharbrough J; Wendel JF; Sloan DB Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2204187119. PubMed ID: 35858449 [TBL] [Abstract][Full Text] [Related]
45. Amino acid sequence variations in Nicotiana CRR4 orthologs determine the species-specific efficiency of RNA editing in plastids. Okuda K; Habata Y; Kobayashi Y; Shikanai T Nucleic Acids Res; 2008 Nov; 36(19):6155-64. PubMed ID: 18824480 [TBL] [Abstract][Full Text] [Related]
46. Genome-wide organellar analyses from the hornwort Leiosporoceros dussii show low frequency of RNA editing. Villarreal A JC; Turmel M; Bourgouin-Couture M; Laroche J; Salazar Allen N; Li FW; Cheng S; Renzaglia K; Lemieux C PLoS One; 2018; 13(8):e0200491. PubMed ID: 30089117 [TBL] [Abstract][Full Text] [Related]
47. Genome-wide transcript profiling reveals the coevolution of plastid gene sequences and transcript processing pathways in the fucoxanthin dinoflagellate Karlodinium veneficum. Richardson E; Dorrell RG; Howe CJ Mol Biol Evol; 2014 Sep; 31(9):2376-86. PubMed ID: 24925926 [TBL] [Abstract][Full Text] [Related]
49. A ribosomal protein gene (rpl32) from tobacco chloroplast DNA is transcribed from alternative promoters: similarities in promoter region organization in plastid housekeeping genes. Vera A; Hirose T; Sugiura M Mol Gen Genet; 1996 Jul; 251(5):518-25. PubMed ID: 8709957 [TBL] [Abstract][Full Text] [Related]
50. Transcript abundance supercedes editing efficiency as a factor in developmental variation of chloroplast gene expression. Peeters NM; Hanson MR RNA; 2002 Apr; 8(4):497-511. PubMed ID: 11991643 [TBL] [Abstract][Full Text] [Related]
51. The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. Hajdukiewicz PT; Allison LA; Maliga P EMBO J; 1997 Jul; 16(13):4041-8. PubMed ID: 9233813 [TBL] [Abstract][Full Text] [Related]
52. Seedling Lethal1, a pentatricopeptide repeat protein lacking an E/E+ or DYW domain in Arabidopsis, is involved in plastid gene expression and early chloroplast development. Pyo YJ; Kwon KC; Kim A; Cho MH Plant Physiol; 2013 Dec; 163(4):1844-58. PubMed ID: 24144791 [TBL] [Abstract][Full Text] [Related]
53. The ins and outs of editing and splicing of plastid RNAs: lessons from parasitic plants. Tillich M; Krause K N Biotechnol; 2010 Jul; 27(3):256-66. PubMed ID: 20206308 [TBL] [Abstract][Full Text] [Related]
54. RNA editing sites in tobacco chloroplast transcripts: editing as a possible regulator of chloroplast RNA polymerase activity. Hirose T; Kusumegi T; Tsudzuki T; Sugiura M Mol Gen Genet; 1999 Oct; 262(3):462-7. PubMed ID: 10589833 [TBL] [Abstract][Full Text] [Related]
55. The plastid transcription machinery and its coordination with the expression of nuclear genome: Plastid-Encoded Polymerase, Nuclear-Encoded Polymerase and the Genomes Uncoupled 1-mediated retrograde communication. Tadini L; Jeran N; Peracchio C; Masiero S; Colombo M; Pesaresi P Philos Trans R Soc Lond B Biol Sci; 2020 Jun; 375(1801):20190399. PubMed ID: 32362266 [TBL] [Abstract][Full Text] [Related]
56. Occurrence of plastid RNA editing in all major lineages of land plants. Freyer R; Kiefer-Meyer MC; Kössel H Proc Natl Acad Sci U S A; 1997 Jun; 94(12):6285-90. PubMed ID: 9177209 [TBL] [Abstract][Full Text] [Related]
57. Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type and PEP-deficient transcription machineries. Legen J; Kemp S; Krause K; Profanter B; Herrmann RG; Maier RM Plant J; 2002 Jul; 31(2):171-88. PubMed ID: 12121447 [TBL] [Abstract][Full Text] [Related]
58. Studying RNA editing in transgenic chloroplasts of higher plants. Bock R Methods Mol Biol; 2004; 265():345-56. PubMed ID: 15103083 [TBL] [Abstract][Full Text] [Related]
59. Evolutionary Model of Plastidial RNA Editing in Angiosperms Presumed from Genome-Wide Analysis of Amborella trichopoda. Ishibashi K; Small I; Shikanai T Plant Cell Physiol; 2019 Oct; 60(10):2141-2151. PubMed ID: 31150097 [TBL] [Abstract][Full Text] [Related]
60. Continuous expression in tobacco leaves of a Brassica napus PEND homologue blocks differentiation of plastids and development of palisade cells. Wycliffe P; Sitbon F; Wernersson J; Ezcurra I; Ellerström M; Rask L Plant J; 2005 Oct; 44(1):1-15. PubMed ID: 16167891 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]