BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 15895271)

  • 1. High-resolution crystal structures of Desulfovibrio vulgaris (Hildenborough) nigerythrin: facile, redox-dependent iron movement, domain interface variability, and peroxidase activity in the rubrerythrins.
    Iyer RB; Silaghi-Dumitrescu R; Kurtz DM; Lanzilotta WN
    J Biol Inorg Chem; 2005 Jun; 10(4):407-16. PubMed ID: 15895271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray crystal structure of Desulfovibrio vulgaris rubrerythrin with zinc substituted into the [Fe(SCys)4] site and alternative diiron site structures.
    Jin S; Kurtz DM; Liu ZJ; Rose J; Wang BC
    Biochemistry; 2004 Mar; 43(11):3204-13. PubMed ID: 15023070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray crystal structures of reduced rubrerythrin and its azide adduct: a structure-based mechanism for a non-heme diiron peroxidase.
    Jin S; Kurtz DM; Liu ZJ; Rose J; Wang BC
    J Am Chem Soc; 2002 Aug; 124(33):9845-55. PubMed ID: 12175244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rubrerythrin operon and nigerythrin gene in Desulfovibrio vulgaris (Hildenborough).
    Lumppio HL; Shenvi NV; Garg RP; Summers AO; Kurtz DM
    J Bacteriol; 1997 Jul; 179(14):4607-15. PubMed ID: 9226272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Displacement of iron by zinc at the diiron site of Desulfovibrio vulgaris rubrerythrin: X-ray crystal structure and anomalous scattering analysis.
    Jin S; Kurtz DM; Liu ZJ; Rose J; Wang BC
    J Inorg Biochem; 2004 May; 98(5):786-96. PubMed ID: 15134924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EPR and ENDOR evidence for a 1-His, hydroxo-bridged mixed-valent diiron site in Desulfovibrio vulgaris rubrerythrin.
    Smoukov SK; Davydov RM; Doan PE; Sturgeon B; Kung IY; Hoffman BM; Kurtz DM
    Biochemistry; 2003 May; 42(20):6201-8. PubMed ID: 12755623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nigerythrin and rubrerythrin from Desulfovibrio vulgaris each contain two mononuclear iron centers and two dinuclear iron clusters.
    Pierik AJ; Wolbert RB; Portier GL; Verhagen MF; Hagen WR
    Eur J Biochem; 1993 Feb; 212(1):237-45. PubMed ID: 8383040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase.
    Coulter ED; Kurtz DM
    Arch Biochem Biophys; 2001 Oct; 394(1):76-86. PubMed ID: 11566030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of Desulfovibrio vulgaris rubrerythrin reveals a unique combination of rubredoxin-like FeS4 and ferritin-like diiron domains.
    deMaré F; Kurtz DM; Nordlund P
    Nat Struct Biol; 1996 Jun; 3(6):539-46. PubMed ID: 8646540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrapeptide sequence homology in rubrerythrin from Desulfovibrio vulgaris: identification of potential ligands to the diiron site.
    Kurtz DM; Prickril BC
    Biochem Biophys Res Commun; 1991 Nov; 181(1):337-41. PubMed ID: 1958203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADH peroxidase activity of rubrerythrin.
    Coulter ED; Shenvi NV; Kurtz DM
    Biochem Biophys Res Commun; 1999 Feb; 255(2):317-23. PubMed ID: 10049706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and sequencing of the gene for rubrerythrin from Desulfovibrio vulgaris (Hildenborough).
    Prickril BC; Kurtz DM; LeGall J; Voordouw G
    Biochemistry; 1991 Nov; 30(46):11118-23. PubMed ID: 1932032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cryo-crystallographic time course for peroxide reduction by rubrerythrin from Pyrococcus furiosus.
    Dillard BD; Demick JM; Adams MW; Lanzilotta WN
    J Biol Inorg Chem; 2011 Aug; 16(6):949-59. PubMed ID: 21647777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance Raman spectroscopic evidence for the FeS4 and Fe-O-Fe sites in rubrerythrin from Desulfovibrio vulgaris.
    Dave BC; Czernuszewicz RS; Prickril BC; Kurtz DM
    Biochemistry; 1994 Mar; 33(12):3572-6. PubMed ID: 8142354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombinant Desulfovibrio vulgaris rubrerythrin. Isolation and characterization of the diiron domain.
    Gupta N; Bonomi F; Kurtz DM; Ravi N; Wang DL; Huynh BH
    Biochemistry; 1995 Mar; 34(10):3310-8. PubMed ID: 7880826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The 1.9 A crystal structure of the "as isolated" rubrerythrin from Desulfovibrio vulgaris: some surprising results.
    Sieker LC; Holmes M; Le Trong I; Turley S; Liu MY; LeGall J; Stenkamp RE
    J Biol Inorg Chem; 2000 Aug; 5(4):505-13. PubMed ID: 10968622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Avoiding high-valent iron intermediates: superoxide reductase and rubrerythrin.
    Kurtz DM
    J Inorg Biochem; 2006 Apr; 100(4):679-93. PubMed ID: 16504301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure studies on rubrerythrin: enzymatic activity in relation to the zinc movement.
    Li M; Liu MY; LeGall J; Gui LL; Liao J; Jiang T; Zhang JP; Liang DC; Chang WR
    J Biol Inorg Chem; 2003 Jan; 8(1-2):149-55. PubMed ID: 12459910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic characterization of 57Fe-reconstituted rubrerythrin, a non-heme iron protein with structural analogies to ribonucleotide reductase.
    Ravi N; Prickril BC; Kurtz DM; Huynh BH
    Biochemistry; 1993 Aug; 32(33):8487-91. PubMed ID: 8395205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris: a novel oxidative stress protection system.
    Lumppio HL; Shenvi NV; Summers AO; Voordouw G; Kurtz DM
    J Bacteriol; 2001 Jan; 183(1):101-8. PubMed ID: 11114906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.