These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 15895684)

  • 1. Inhibition of porcine small intestinal sucrase by valienamine.
    Zheng YG; Shentu XP; Shen YC
    J Enzyme Inhib Med Chem; 2005 Feb; 20(1):49-53. PubMed ID: 15895684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory effect of validamine, valienamine and valiolamine on activities of carbohydrases in rat small intestinal brush border membranes.
    Takeuchi M; Takai N; Asano N; Kameda Y; Matsui K
    Chem Pharm Bull (Tokyo); 1990 Jul; 38(7):1970-2. PubMed ID: 2268898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties and production of valienamine and its related analogues.
    Chen X; Fan Y; Zheng Y; Shen Y
    Chem Rev; 2003 May; 103(5):1955-77. PubMed ID: 12744697
    [No Abstract]   [Full Text] [Related]  

  • 4. Valiolamine, a new alpha-glucosidase inhibiting aminocyclitol produced by Streptomyces hygroscopicus.
    Kameda Y; Asano N; Yoshikawa M; Takeuchi M; Yamaguchi T; Matsui K; Horii S; Fukase H
    J Antibiot (Tokyo); 1984 Nov; 37(11):1301-7. PubMed ID: 6392268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic synthesis of glucoside derivatives of validamine and valienamine.
    Furumoto T; Kameda Y; Matsui K
    Chem Pharm Bull (Tokyo); 1992 Jul; 40(7):1871-5. PubMed ID: 1394706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De Novo Biosynthesis of β-Valienamine in Engineered Streptomyces hygroscopicus 5008.
    Cui L; Zhu Y; Guan X; Deng Z; Bai L; Feng Y
    ACS Synth Biol; 2016 Jan; 5(1):15-20. PubMed ID: 26436873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-dependent inhibitory effects of tris and lithium ion on intestinal brush-border sucrase.
    Vasseur M; Frangne R; Caüzac M; Mahmood A; Alvarado F
    J Enzyme Inhib; 1990; 4(1):15-26. PubMed ID: 2094767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Validamycin Shunt Pathway for Valienamine Synthesis in Engineered
    Cui L; Wei X; Wang X; Bai L; Lin S; Feng Y
    ACS Synth Biol; 2020 Feb; 9(2):294-303. PubMed ID: 31940432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitors of pig kidney trehalase.
    Kyosseva SV; Kyossev ZN; Elbein AD
    Arch Biochem Biophys; 1995 Feb; 316(2):821-6. PubMed ID: 7864639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and identification of a novel valienamine-producing bacterium.
    Wang YS; Zheng YG; Shen YC
    J Appl Microbiol; 2007 Mar; 102(3):838-44. PubMed ID: 17309634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetically engineered production of 1,1'-bis-valienamine and validienamycin in Streptomyces hygroscopicus and their conversion to valienamine.
    Xu H; Yang J; Bai L; Deng Z; Mahmud T
    Appl Microbiol Biotechnol; 2009 Jan; 81(5):895-902. PubMed ID: 18820907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of valienamine in the microbial degradation of validamycin A after derivatization with p-nitrofluorobenzene by reversed-phase high-performance liquid chromatography.
    Chen X; Zheng Y; Shen Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Sep; 824(1-2):341-7. PubMed ID: 16095986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous determination of substrate and product in the process of preparation of valienamine by capillary zone electrophoresis.
    Wei XD; Zhao WJ; Gu M; Zhao B; Yao RY
    J Sep Sci; 2010 Jul; 33(13):1997-2001. PubMed ID: 20506424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of brush border sucrase by indoline 2,3-dione (isatin) in rat small intestine.
    Mousavi ML; Bansal RC; Singh K; Mahmood A
    Indian J Exp Biol; 1994 Sep; 32(9):612-5. PubMed ID: 7814038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An example of enzyme hysteresis. The slow and tight interaction of some fully competitive inhibitors with small intestinal sucrase.
    Hanozet G; Pircher HP; Vanni P; Oesch B; Semenza G
    J Biol Chem; 1981 Apr; 256(8):3703-11. PubMed ID: 6452453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel synthesis of natural pseudo-aminosugars, (+)-valienamine and (+)-validamine.
    Tatsuta K; Mukai H; Takahashi M
    J Antibiot (Tokyo); 2000 Apr; 53(4):430-5. PubMed ID: 10866227
    [No Abstract]   [Full Text] [Related]  

  • 17. Quantitative relationship between intestinal sucrase inhibition and reduction of the glycemic response to sucrose in rats.
    Robinson KM; Heineke EW; Begovic ME
    J Nutr; 1990 Jan; 120(1):105-11. PubMed ID: 2303907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Affinity labeling of the active sites in the sucrase-isomaltase complex from small intestine.
    Quaroni A; Gershon E; Semenza G
    J Biol Chem; 1974 Oct; 249(20):6424-33. PubMed ID: 4422495
    [No Abstract]   [Full Text] [Related]  

  • 19. Steady-state kinetics of rabbit-intestinal sucrase. Kinetic mechanism, Na+ activation, inhibition by tris(hydroxymethyl)aminomethane at the glucose subsite.
    Semenza G; von Balthazar AK
    Eur J Biochem; 1974 Jan; 41(1):149-62. PubMed ID: 4816451
    [No Abstract]   [Full Text] [Related]  

  • 20. Transformation of quercitols into 4-methylenecyclohex-5-ene-1,2,3-triol derivatives, precursors for the chemical chaperones N-octyl-4-epi-β-valienamine (NOEV) and N-octyl-β-valienamine (NOV).
    Kuno S; Takahashi A; Ogawa S
    Bioorg Med Chem Lett; 2011 Dec; 21(23):7189-92. PubMed ID: 22001090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.