These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 15895734)
1. Growth and toxin production by Clostridium botulinum in steamed rice aseptically packed under modified atmosphere. Kasai Y; Kimura B; Kawasaki S; Fukaya T; Sakuma K; Fujii T J Food Prot; 2005 May; 68(5):1005-11. PubMed ID: 15895734 [TBL] [Abstract][Full Text] [Related]
2. Growth and toxin production of proteolytic Clostridium botulinum in aseptically steamed rice products at pH 4.6 to 6.8, packed under modified atmosphere, using a deoxidant pack. Kimura B; Kimura R; Fukaya T; Sakuma K; Miya S; Fujii T J Food Prot; 2008 Mar; 71(3):468-72. PubMed ID: 18389687 [TBL] [Abstract][Full Text] [Related]
3. Growth and toxin production by Clostridium botulinum in English-style crumpets packaged under modified atmospheres. Daifas DP; Smith JP; Blanchfield B; Austin JW J Food Prot; 1999 Apr; 62(4):349-55. PubMed ID: 10419207 [TBL] [Abstract][Full Text] [Related]
4. Effects of modified atmosphere packaging on toxin production by Clostridium botulinum in raw aquacultured summer flounder fillets (Paralichthys dentatus). Arritt FM; Eifert JD; Jahncke ML; Pierson MD; Williams RC J Food Prot; 2007 May; 70(5):1159-64. PubMed ID: 17536674 [TBL] [Abstract][Full Text] [Related]
5. Botulism challenge studies of a modified atmosphere package for fresh mussels: inoculated pack studies. Newell CR; Ma L; Doyle M J Food Prot; 2012 Jun; 75(6):1157-66. PubMed ID: 22691489 [TBL] [Abstract][Full Text] [Related]
6. Clostridium botulinum Toxin Production in Relation to Spoilage of Atlantic Salmon (Salmo salar) Packaged in Films of Varying Oxygen Permeabilities and with Different Atmospheres. Erickson MC; Ma LM; Doyle MP J Food Prot; 2015 Nov; 78(11):2006-18. PubMed ID: 26555524 [TBL] [Abstract][Full Text] [Related]
7. Growth and toxin production by Clostridium botulinum on inoculated fresh-cut packaged vegetables. Austin JW; Dodds KL; Blanchfield B; Farber JM J Food Prot; 1998 Mar; 61(3):324-8. PubMed ID: 9708304 [TBL] [Abstract][Full Text] [Related]
9. Effect of Equilibrated pH and Indigenous Spoilage Microorganisms on the Inhibition of Proteolytic Clostridium botulinum Toxin Production in Experimental Meals under Temperature Abuse. Golden MC; Wanless BJ; David JRD; Lineback DS; Talley RJ; Kottapalli B; Glass KA J Food Prot; 2017 Aug; 80(8):1252-1258. PubMed ID: 28686492 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of botulinal toxin production in packaged fresh-cut cantaloupe and honeydew melons. Larson AE; Johnson EA J Food Prot; 1999 Aug; 62(8):948-52. PubMed ID: 10456752 [TBL] [Abstract][Full Text] [Related]
11. Effect of pH and CO2 on growth and toxin production by Clostridium botulinum in English-style crumpets packaged under modified atmospheres. Daifas DP; Smith JP; Blanchfield B; Austin JW J Food Prot; 1999 Oct; 62(10):1157-61. PubMed ID: 10528719 [TBL] [Abstract][Full Text] [Related]
12. Inability of non-proteolytic Clostridium botulinum to grow in mussels inoculated via immersion and packaged in high oxygen atmospheres. Newell CR; Doyle M; Ma L Food Microbiol; 2015 Apr; 46():204-209. PubMed ID: 25475286 [TBL] [Abstract][Full Text] [Related]
13. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing. Lindström M; Kiviniemi K; Korkeala H Int J Food Microbiol; 2006 Apr; 108(1):92-104. PubMed ID: 16480785 [TBL] [Abstract][Full Text] [Related]
14. Probabilistic representation of the exposure of consumers to Clostridium botulinum neurotoxin in a minimally processed potato product. Barker GC; Malakar PK; Del Torre M; Stecchini ML; Peck MW Int J Food Microbiol; 2005 Apr; 100(1-3):345-57. PubMed ID: 15854717 [TBL] [Abstract][Full Text] [Related]
16. Effects of carbon dioxide on growth of proteolytic Clostridium botulinum, its ability to produce neurotoxin, and its transcriptome. Artin I; Mason DR; Pin C; Schelin J; Peck MW; Holst E; Rådström P; Carter AT Appl Environ Microbiol; 2010 Feb; 76(4):1168-72. PubMed ID: 20038699 [TBL] [Abstract][Full Text] [Related]
17. Bacteria associated with processed crawfish and potential toxin production by Clostridium botulinum type E in vacuum-packaged and aerobically packaged crawfish tails. Lyon WJ; Reddmann CS J Food Prot; 2000 Dec; 63(12):1687-96. PubMed ID: 11131892 [TBL] [Abstract][Full Text] [Related]
18. Assessment of the risk of botulism from chilled, vacuum/modified atmosphere packed fresh beef, lamb and pork held at 3 °C-8 °C. Peck MW; Webb MD; Goodburn KE Food Microbiol; 2020 Oct; 91():103544. PubMed ID: 32539958 [TBL] [Abstract][Full Text] [Related]
19. Toxin production by Clostridium botulinum in pasteurized milk treated with carbon dioxide. Glass KA; Kaufman KM; Smith AL; Johnson EA; Chen JH; Hotchkiss J J Food Prot; 1999 Aug; 62(8):872-6. PubMed ID: 10456739 [TBL] [Abstract][Full Text] [Related]
20. Effects of mastic resin and its essential oil on the growth of proteolytic Clostridium botulinum. Daifas DP; Smith JP; Blanchfield B; Sanders G; Austin JW; Koukoutisis J Int J Food Microbiol; 2004 Aug; 94(3):313-22. PubMed ID: 15246242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]