These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 15895842)
1. Assessment of respirable dust and its free silica contents in different Indian coalmines. Mukherjee AK; Bhattacharya SK; Saiyed HN Ind Health; 2005 Apr; 43(2):277-84. PubMed ID: 15895842 [TBL] [Abstract][Full Text] [Related]
2. The evaluation and quantification of respirable coal and silica dust concentrations: a task-based approach. Grové T; Van Dyk T; Franken A; Du Plessis J J Occup Environ Hyg; 2014; 11(6):406-14. PubMed ID: 24380473 [TBL] [Abstract][Full Text] [Related]
3. Estimation of respirable dust exposure among coal miners in South Africa. Naidoo R; Seixas N; Robins T J Occup Environ Hyg; 2006 Jun; 3(6):293-300. PubMed ID: 16621766 [TBL] [Abstract][Full Text] [Related]
4. Respirable dust exposures in U.S. surface coal mines (1982-1986). Piacitelli GM; Amandus HE; Dieffenbach A Arch Environ Health; 1990; 45(4):202-9. PubMed ID: 2169228 [TBL] [Abstract][Full Text] [Related]
5. [Exposure to silica dust in coal-mining. Analysis based on measurements made by industrial hygiene laboratories in Poland, 2001-2005]. Mikołajczyk U; Bujak-Pietrek S; Szadkowska-Stańczyk I Med Pr; 2010; 61(3):287-97. PubMed ID: 20677428 [TBL] [Abstract][Full Text] [Related]
6. A comprehensive assessment of exposures to respirable dust and silica in the taconite mining industry. Hwang J; Ramachandran G; Raynor PC; Alexander BH; Mandel JH J Occup Environ Hyg; 2017 May; 14(5):377-388. PubMed ID: 28388309 [TBL] [Abstract][Full Text] [Related]
7. Analysis of Historical Worker Exposures to Respirable Dust from Talc Mining and Milling Operations in Vermont. Rossner A; Williams PRD; Mellas-Hulett E; Rahman MA Ann Work Expo Health; 2020 Apr; 64(4):416-429. PubMed ID: 32050017 [TBL] [Abstract][Full Text] [Related]
8. Cross-sectional silica exposure measurements at two Zambian copper mines of Nkana and Mufulira. Hayumbu P; Robins TG; Key-Schwartz R Int J Environ Res Public Health; 2008 Jun; 5(2):86-90. PubMed ID: 18678921 [TBL] [Abstract][Full Text] [Related]
9. Exposure profile of respirable crystalline silica in stone mines in India. Prajapati SS; Nandi SS; Deshmukh A; Dhatrak SV J Occup Environ Hyg; 2020; 17(11-12):531-537. PubMed ID: 32783703 [TBL] [Abstract][Full Text] [Related]
10. Concentrations of respirable crystalline silica and radon among tanzanite mining communities in Mererani, Tanzania. Mbuya AW; Mboya IB; Semvua HH; Msuya SE; Howlett PJ; Mamuya SH Ann Work Expo Health; 2024 Jan; 68(1):48-57. PubMed ID: 37824745 [TBL] [Abstract][Full Text] [Related]
11. Respirable coal mine dust at surface mines, United States, 1982-2017. Doney BC; Blackley D; Hale JM; Halldin C; Kurth L; Syamlal G; Laney AS Am J Ind Med; 2020 Mar; 63(3):232-239. PubMed ID: 31820465 [TBL] [Abstract][Full Text] [Related]
12. Respirable dust and crystalline silica exposure among different mining sectors in India. Prajapati SS; Mishra RA; Jhariya B; Dhatrak SV Arch Environ Occup Health; 2021; 76(7):455-461. PubMed ID: 33970811 [TBL] [Abstract][Full Text] [Related]
13. Thin seams and small mines are associated with higher exposures to respirable crystalline silica in US underground coal mines. Shao Y; Almberg KS; Friedman LS; Cohen RA; Go LHT Occup Environ Med; 2024 Jul; 81(6):308-312. PubMed ID: 38937079 [TBL] [Abstract][Full Text] [Related]
14. Dust exposures at U.S. surface coal mines in 1982-1983. Amandus HE; Piacitelli G Arch Environ Health; 1987; 42(6):374-81. PubMed ID: 3439816 [TBL] [Abstract][Full Text] [Related]
15. Comparison of mass concentrations determined with personal respirable coal mine dust samplers operating at 1.2 liters per minute and the Casella 113A gravimetric sampler (MRE). Treaftis HN; Gero AJ; Kacsmar PM; Tomb TF Am Ind Hyg Assoc J; 1984 Dec; 45(12):826-32. PubMed ID: 6517028 [TBL] [Abstract][Full Text] [Related]
16. Occupational Exposure to Silica Dust and Silicosis Risk in Chinese Noncoal Mines: Qualitative and Quantitative Risk Assessment. Liu K; Sun X; Hu WJ; Mei LY; Zhang HD; Su SB; Ning K; Nie YF; Qiu LP; Xia Y; Han L; Zhi Q; Shi CB; Wang G; Wen W; Gao JQ; Yu B; Wang X; Dong YW; Kang N; Han F; Bian HY; Chen YQ; Ye M JMIR Public Health Surveill; 2024 Sep; 10():e56283. PubMed ID: 39222341 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of occupational exposures to respirable dust in underground coal mines. Onder M; Onder S Ind Health; 2009 Jan; 47(1):43-9. PubMed ID: 19218756 [TBL] [Abstract][Full Text] [Related]
18. Evaluating the use of a field-based silica monitoring approach with dust from copper mines. Cauda E; Chubb L; Reed R; Stepp R J Occup Environ Hyg; 2018 Oct; 15(10):732-742. PubMed ID: 29985785 [TBL] [Abstract][Full Text] [Related]
19. High exposure to respirable dust and quartz in a labour-intensive coal mine in Tanzania. Mamuya SH; Bråtveit M; Mwaiselage J; Mashalla YJ; Moen BE Ann Occup Hyg; 2006 Mar; 50(2):197-204. PubMed ID: 16143714 [TBL] [Abstract][Full Text] [Related]
20. The prevalences and levels of occupational exposure to dusts and/or fibres (silica, asbestos and coal): A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. Schlünssen V; Mandrioli D; Pega F; Momen NC; Ádám B; Chen W; Cohen RA; Godderis L; Göen T; Hadkhale K; Kunpuek W; Lou J; Mandic-Rajcevic S; Masci F; Nemery B; Popa M; Rajatanavin N; Sgargi D; Siriruttanapruk S; Sun X; Suphanchaimat R; Thammawijaya P; Ujita Y; van der Mierden S; Vangelova K; Ye M; Zungu M; Scheepers PTJ Environ Int; 2023 Aug; 178():107980. PubMed ID: 37487377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]