BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 15896042)

  • 1. Direct and indirect monitoring of peptide-silica interactions using time-resolved fluorescence anisotropy.
    Sui J; Tleugabulova D; Brennan JD
    Langmuir; 2005 May; 21(11):4996-5001. PubMed ID: 15896042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying surface coverage of colloidal silica by a cationic peptide using a combined centrifugation/time-resolved fluorescence anisotropy approach.
    Tleugabulova D; Brennan JD
    Langmuir; 2006 Feb; 22(4):1852-7. PubMed ID: 16460117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring solute interactions with poly(ethylene oxide)-modified colloidal silica nanoparticles via fluorescence anisotropy decay.
    Tleugabulova D; Duft AM; Brook MA; Brennan JD
    Langmuir; 2004 Jan; 20(1):101-8. PubMed ID: 15745006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomolecules at the amorphous silica/water interface: Binding and fluorescence anisotropy of peptides.
    Shi B; Shin YK; Hassanali AA; Singer SJ
    Colloids Surf B Biointerfaces; 2017 Sep; 157():83-92. PubMed ID: 28578272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for rigid binding of rhodamine 6G to silica surfaces in aqueous solution based on fluorescence anisotropy decay analysis.
    Tleugabulova D; Sui J; Ayers PW; Brennan JD
    J Phys Chem B; 2005 Apr; 109(16):7850-8. PubMed ID: 16851914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence anisotropy in studies of solute interactions with covalently modified colloidal silica nanoparticles.
    Tleugabulova D; Zhang Z; Chen Y; Brook MA; Brennan JD
    Langmuir; 2004 Feb; 20(3):848-54. PubMed ID: 15773114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating formation and growth mechanisms of silica particles using fluorescence anisotropy decay analysis.
    Tleugabulova D; Duft AM; Zhang Z; Chen Y; Brook MA; Brennan JD
    Langmuir; 2004 Jul; 20(14):5924-32. PubMed ID: 16459611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How does the surface charge of ionic surfactant and cholesterol forming vesicles control rotational and translational motion of rhodamine 6G perchlorate (R6G ClO₄)?
    Ghosh S; Roy A; Banik D; Kundu N; Kuchlyan J; Dhir A; Sarkar N
    Langmuir; 2015 Mar; 31(8):2310-20. PubMed ID: 25643899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption.
    Patwardhan SV; Emami FS; Berry RJ; Jones SE; Naik RR; Deschaume O; Heinz H; Perry CC
    J Am Chem Soc; 2012 Apr; 134(14):6244-56. PubMed ID: 22435500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions at the silica-peptide interface: the influence of particle size and surface functionality.
    Puddu V; Perry CC
    Langmuir; 2014 Jan; 30(1):227-33. PubMed ID: 24328428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Balance between Coulombic interactions and physical confinement in silica hydrogel encapsulation.
    Zhou Y; Yip WT
    J Phys Chem B; 2009 Apr; 113(17):5720-7. PubMed ID: 19344099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide.
    Ren H; Kulkarni DD; Kodiyath R; Xu W; Choi I; Tsukruk VV
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2459-70. PubMed ID: 24494630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption behavior of statherin and a statherin peptide onto hydroxyapatite and silica surfaces by in situ ellipsometry.
    Santos O; Kosoric J; Hector MP; Anderson P; Lindh L
    J Colloid Interface Sci; 2008 Feb; 318(2):175-82. PubMed ID: 18054952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle Sizing and Potential Quality Control of Sols Using a Unique Fluorescence Anisotropy Probe and 3D Contour Anisotropy Mapping.
    Karolin J; Geddes CD
    J Phys Chem Lett; 2015 Mar; 6(6):918-22. PubMed ID: 26262845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Location and dynamics of tryptophan in transmembrane alpha-helix peptides: a fluorescence and circular dichroism study.
    de Foresta B; Tortech L; Vincent M; Gallay J
    Eur Biophys J; 2002 Jun; 31(3):185-97. PubMed ID: 12029331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotational and translational dynamics of rhodamine 6G in a pyrrolidinium ionic liquid: a combined time-resolved fluorescence anisotropy decay and NMR study.
    Guo J; Han KS; Mahurin SM; Baker GA; Hillesheim PC; Dai S; Hagaman EW; Shaw RW
    J Phys Chem B; 2012 Jul; 116(27):7883-90. PubMed ID: 22690897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence quenching of dyes by tryptophan: interactions at atomic detail from combination of experiment and computer simulation.
    Vaiana AC; Neuweiler H; Schulz A; Wolfrum J; Sauer M; Smith JC
    J Am Chem Soc; 2003 Nov; 125(47):14564-72. PubMed ID: 14624606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy transfer from silica core-surfactant shell nanoparticles to hosted molecular fluorophores.
    Rampazzo E; Bonacchi S; Juris R; Montalti M; Genovese D; Zaccheroni N; Prodi L; Rambaldi DC; Zattoni A; Reschiglian P
    J Phys Chem B; 2010 Nov; 114(45):14605-13. PubMed ID: 21070057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions at the Silica-Peptide Interface: Influence of the Extent of Functionalization on the Conformational Ensemble.
    Sola-Rabada A; Michaelis M; Oliver DJ; Roe MJ; Colombi Ciacchi L; Heinz H; Perry CC
    Langmuir; 2018 Jul; 34(28):8255-8263. PubMed ID: 29924624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing strong adsorption of solute onto C18-silica gel by fluorescence correlation imaging and single-molecule spectroscopy under RPLC conditions.
    Zhong Z; Lowry M; Wang G; Geng L
    Anal Chem; 2005 Apr; 77(8):2303-10. PubMed ID: 15828761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.