These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 15896069)

  • 41. How gold nanoparticles have stayed in the light: the 3M's principle.
    Odom TW; Nehl CL
    ACS Nano; 2008 Apr; 2(4):612-6. PubMed ID: 19206589
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis of nano-sized hydroxyapatite.
    Tan SA; Ahmad Fauzi MN; Luay BH; Radzali O
    Med J Malaysia; 2004 May; 59 Suppl B():162-3. PubMed ID: 15468868
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chiral crystallization of glutamic acid on self assembled films of cysteine.
    Dressler DH; Mastai Y
    Chirality; 2007 May; 19(5):358-65. PubMed ID: 17354265
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanocrystalline hydroxyapatite-polyaspartate composites.
    Bigi A; Boanini E; Gazzano M; Rubini K; Torricelli P
    Biomed Mater Eng; 2004; 14(4):573-9. PubMed ID: 15472404
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrophoretic analysis of gold nanoparticles: size-dependent electrophoretic mobility of nanoparticles.
    Bücking W; Nann T
    IEE Proc Nanobiotechnol; 2006 Jun; 153(3):47-53. PubMed ID: 16796399
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes.
    Eustis S; el-Sayed MA
    Chem Soc Rev; 2006 Mar; 35(3):209-17. PubMed ID: 16505915
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance.
    Li X; Tamada K; Baba A; Knoll W; Hara M
    J Phys Chem B; 2006 Aug; 110(32):15755-62. PubMed ID: 16898722
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigation of surface-modified solid lipid nanocontainers formulated with a heterolipid-templated homolipid.
    Attama AA; Müller-Goymann CC
    Int J Pharm; 2007 Apr; 334(1-2):179-89. PubMed ID: 17140752
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design of Janus nanoparticles with atomic precision: tungsten-doped gold nanostructures.
    Sun Q; Wang Q; Jena P; Kawazoe Y
    ACS Nano; 2008 Feb; 2(2):341-7. PubMed ID: 19206636
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surfactant-free synthesis and functionalization of gold nanoparticles.
    Schulz-Dobrick M; Sarathy KV; Jansen M
    J Am Chem Soc; 2005 Sep; 127(37):12816-7. PubMed ID: 16159272
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles.
    Rai A; Singh A; Ahmad A; Sastry M
    Langmuir; 2006 Jan; 22(2):736-41. PubMed ID: 16401125
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rational and combinatorial design of peptide capping ligands for gold nanoparticles.
    Lévy R; Thanh NT; Doty RC; Hussain I; Nichols RJ; Schiffrin DJ; Brust M; Fernig DG
    J Am Chem Soc; 2004 Aug; 126(32):10076-84. PubMed ID: 15303884
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ionogel-templated synthesis and organization of anisotropic gold nanoparticles.
    Firestone MA; Dietz ML; Seifert S; Trasobares S; Miller DJ; Zaluzec NJ
    Small; 2005 Jul; 1(7):754-60. PubMed ID: 17193519
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Shape and size selective separation of gold nanoclusters by competitive complexation with octadecylamine monolayers at the air-water interface.
    Pasricha R; Singh A; Sastry M
    J Colloid Interface Sci; 2009 May; 333(1):380-8. PubMed ID: 19211109
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electronic structure of thiolate-covered gold nanoparticles: Au102(MBA)44.
    Li Y; Galli G; Gygi F
    ACS Nano; 2008 Sep; 2(9):1896-902. PubMed ID: 19206430
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electronic and geometric properties of Au nanoparticles on Highly Ordered Pyrolytic Graphite (HOPG) studied using X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM).
    Lopez-Salido I; Lim DC; Dietsche R; Bertram N; Kim YD
    J Phys Chem B; 2006 Jan; 110(3):1128-36. PubMed ID: 16471654
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrochemical preparation and delivery of melanin-iron covered gold nanoparticles.
    Grumelli D; Vericat C; Benítez G; Ramallo-López JM; Giovanetti L; Requejo F; Moreno MS; Orive AG; Creus AH; Salvarezza RC
    Chemphyschem; 2009 Feb; 10(2):370-3. PubMed ID: 19072961
    [TBL] [Abstract][Full Text] [Related]  

  • 59. One-step synthesis of highly dispersed gold nanocrystals on silica spheres.
    Phonthammachai N; White TJ
    Langmuir; 2007 Nov; 23(23):11421-4. PubMed ID: 17915900
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reversible self-assembly of carboxylated peptide-functionalized gold nanoparticles driven by metal-ion coordination.
    Si S; Raula M; Paira TK; Mandal TK
    Chemphyschem; 2008 Aug; 9(11):1578-84. PubMed ID: 18615416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.