These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 15896350)

  • 1. Protein misfolding and amyloid formation for the peptide GNNQQNY from yeast prion protein Sup35: simulation by reaction path annealing.
    Lipfert J; Franklin J; Wu F; Doniach S
    J Mol Biol; 2005 Jun; 349(3):648-58. PubMed ID: 15896350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HRMAS 1H NMR conformational study of the resin-bound amyloid-forming peptide GNNQQNY from the yeast prion Sup35.
    Andrey SB; Chan ML; Power WP
    J Phys Chem A; 2010 Mar; 114(10):3457-65. PubMed ID: 20155963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A molecular dynamics approach to the structural characterization of amyloid aggregation.
    Cecchini M; Curcio R; Pappalardo M; Melki R; Caflisch A
    J Mol Biol; 2006 Apr; 357(4):1306-21. PubMed ID: 16483608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consensus features in amyloid fibrils: sheet-sheet recognition via a (polar or nonpolar) zipper structure.
    Zheng J; Ma B; Nussinov R
    Phys Biol; 2006 Oct; 3(3):P1-4. PubMed ID: 17021379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic structures of amyloid cross-beta spines reveal varied steric zippers.
    Sawaya MR; Sambashivan S; Nelson R; Ivanova MI; Sievers SA; Apostol MI; Thompson MJ; Balbirnie M; Wiltzius JJ; McFarlane HT; Madsen AØ; Riekel C; Eisenberg D
    Nature; 2007 May; 447(7143):453-7. PubMed ID: 17468747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. beta-Helix is a likely core structure of yeast prion Sup35 amyloid fibers.
    Kishimoto A; Hasegawa K; Suzuki H; Taguchi H; Namba K; Yoshida M
    Biochem Biophys Res Commun; 2004 Mar; 315(3):739-45. PubMed ID: 14975763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers.
    Shorter J; Lindquist S
    Science; 2004 Jun; 304(5678):1793-7. PubMed ID: 15155912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural polyphenols as inhibitors of amyloid aggregation. Molecular dynamics study of GNNQQNY heptapeptide decamer.
    Berhanu WM; Masunov AE
    Biophys Chem; 2010 Jun; 149(1-2):12-21. PubMed ID: 20456856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual binding modes of Congo red to amyloid protofibril surface observed in molecular dynamics simulations.
    Wu C; Wang Z; Lei H; Zhang W; Duan Y
    J Am Chem Soc; 2007 Feb; 129(5):1225-32. PubMed ID: 17263405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-hairpin folding by a model amyloid peptide in solution and at an interface.
    Knecht V
    J Phys Chem B; 2008 Aug; 112(31):9476-83. PubMed ID: 18593146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the cross-beta spine of amyloid-like fibrils.
    Nelson R; Sawaya MR; Balbirnie M; Madsen AØ; Riekel C; Grothe R; Eisenberg D
    Nature; 2005 Jun; 435(7043):773-8. PubMed ID: 15944695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of divalent copper, manganese and zinc ions on fibril nucleation and elongation of the amyloid-like yeast prion determinant Sup35p-NM.
    Suhre MH; Hess S; Golser AV; Scheibel T
    J Inorg Biochem; 2009 Dec; 103(12):1711-20. PubMed ID: 19853305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent blocking of fibril formation and aggregation of intracellular amyloidgenic proteins by transglutaminase-catalyzed intramolecular cross-linking.
    Konno T; Morii T; Hirata A; Sato S; Oiki S; Ikura K
    Biochemistry; 2005 Feb; 44(6):2072-9. PubMed ID: 15697232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mechanism and application of molecular self-assembly in Sup35 prion domain of Saccharomyces cerevisiae].
    Yin W; He J; Yu Z; Wang J
    Sheng Wu Gong Cheng Xue Bao; 2011 Oct; 27(10):1401-7. PubMed ID: 22260056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors that affect the degree of twist in beta-sheet structures: a molecular dynamics simulation study of a cross-beta filament of the GNNQQNY peptide.
    Periole X; Rampioni A; Vendruscolo M; Mark AE
    J Phys Chem B; 2009 Feb; 113(6):1728-37. PubMed ID: 19154133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular structure of amyloid fibrils formed by residues 127 to 147 of the human prion protein.
    Lin NS; Chao JC; Cheng HM; Chou FC; Chang CF; Chen YR; Chang YJ; Huang SJ; Chan JC
    Chemistry; 2010 May; 16(18):5492-9. PubMed ID: 20358555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics and stability of amyloid-like steric zipper assemblies with hydrophobic dry interfaces.
    Vitagliano L; Stanzione F; De Simone A; Esposito L
    Biopolymers; 2009 Dec; 91(12):1161-71. PubMed ID: 19280623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro assay for fragmentation of amyloid fibers of yeast prion protein.
    Inoue Y; Yoshida M
    Methods; 2006 May; 39(1):56-60. PubMed ID: 16750392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural stability and dynamics of an amyloid-forming peptide GNNQQNY from the yeast prion sup-35.
    Zheng J; Ma B; Tsai CJ; Nussinov R
    Biophys J; 2006 Aug; 91(3):824-33. PubMed ID: 16679374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of side-chain interactions in the early steps of aggregation: Molecular dynamics simulations of an amyloid-forming peptide from the yeast prion Sup35.
    Gsponer J; Haberthür U; Caflisch A
    Proc Natl Acad Sci U S A; 2003 Apr; 100(9):5154-9. PubMed ID: 12700355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.