BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 15896645)

  • 1. Effects of the residues on the excitation energies of protonated Schiff base of retinal (PSBR) in bR: a TD-DFT study.
    Tachikawa H; Kawabata H
    J Photochem Photobiol B; 2005 Jun; 79(3):191-5. PubMed ID: 15896645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TD-DFT calculations of the potential energy curves for the trans-cis photo-isomerization of protonated Schiff base of retinal.
    Tachikawa H; Iyama T
    J Photochem Photobiol B; 2004 Oct; 76(1-3):55-60. PubMed ID: 15488716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural changes of water in the Schiff base region of bacteriorhodopsin: proposal of a hydration switch model.
    Tanimoto T; Furutani Y; Kandori H
    Biochemistry; 2003 Mar; 42(8):2300-6. PubMed ID: 12600197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water molecules in the schiff base region of bacteriorhodopsin.
    Shibata M; Tanimoto T; Kandori H
    J Am Chem Soc; 2003 Nov; 125(44):13312-3. PubMed ID: 14582999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of the back proton-transfer from Asp85 to the retinal Schiff base in bacteriorhodopsin: a theoretical analysis of structural elements.
    Bondar AN; Suhai S; Fischer S; Smith JC; Elstner M
    J Struct Biol; 2007 Mar; 157(3):454-69. PubMed ID: 17189704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site.
    Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H
    Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study of the opsin shift of deprotonated retinal schiff base in the M state of bacteriorhodopsin.
    Fujimoto KJ; Asai K; Hasegawa JY
    Phys Chem Chem Phys; 2010 Oct; 12(40):13107-16. PubMed ID: 20830417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational analysis of the proton translocation from Asp96 to schiff base in bacteriorhodopsin.
    Sato Y; Hata M; Neya S; Hoshino T
    J Phys Chem B; 2006 Nov; 110(45):22804-12. PubMed ID: 17092031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin.
    Luecke H; Schobert B; Cartailler JP; Richter HT; Rosengarth A; Needleman R; Lanyi JK
    J Mol Biol; 2000 Jul; 300(5):1237-55. PubMed ID: 10903866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Key role of electrostatic interactions in bacteriorhodopsin proton transfer.
    Bondar AN; Fischer S; Smith JC; Elstner M; Suhai S
    J Am Chem Soc; 2004 Nov; 126(44):14668-77. PubMed ID: 15521787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of arginine-82 on the interactions of internal water molecules in bacteriorhodopsin.
    Hatanaka M; Sasaki J; Kandori H; Ebrey TG; Needleman R; Lanyi JK; Maeda A
    Biochemistry; 1996 May; 35(20):6308-12. PubMed ID: 8639574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-bonding interaction of the protonated schiff base with halides in a chloride-pumping bacteriorhodopsin mutant.
    Shibata M; Ihara K; Kandori H
    Biochemistry; 2006 Sep; 45(35):10633-40. PubMed ID: 16939215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitation energies of a water-bridged twisted retinal structure in the bacteriorhodopsin proton pump: a theoretical investigation.
    Wolter T; Welke K; Phatak P; Bondar AN; Elstner M
    Phys Chem Chem Phys; 2013 Aug; 15(30):12582-90. PubMed ID: 23779103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Key role of active-site water molecules in bacteriorhodopsin proton-transfer reactions.
    Bondar AN; Baudry J; Suhai S; Fischer S; Smith JC
    J Phys Chem B; 2008 Nov; 112(47):14729-41. PubMed ID: 18973373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of proton transfers in Bacteriorhodopsin bR and M intermediates.
    Song Y; Mao J; Gunner MR
    Biochemistry; 2003 Aug; 42(33):9875-88. PubMed ID: 12924936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photochemistry of a retinal protonated schiff-base analogue mimicking the opsin shift of bacteriorhodopsin.
    Bismuth O; Friedman N; Sheves M; Ruhman S
    J Phys Chem B; 2007 Mar; 111(9):2327-34. PubMed ID: 17298090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absorption of schiff-base retinal chromophores in vacuo.
    Andersen LH; Nielsen IB; Kristensen MB; El Ghazaly MO; Haacke S; Nielsen MB; Petersen MA
    J Am Chem Soc; 2005 Sep; 127(35):12347-50. PubMed ID: 16131214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relocation of water molecules between the Schiff base and the Thr46-Asp96 region during light-driven unidirectional proton transport by bacteriorhodopsin: an FTIR study of the N intermediate.
    Maeda A; Gennis RB; Balashov SP; Ebrey TG
    Biochemistry; 2005 Apr; 44(16):5960-8. PubMed ID: 15835885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanism of vectorial proton translocation by bacteriorhodopsin.
    Subramaniam S; Henderson R
    Nature; 2000 Aug; 406(6796):653-7. PubMed ID: 10949309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of bacteriorhodopsin at 1.55 A resolution.
    Luecke H; Schobert B; Richter HT; Cartailler JP; Lanyi JK
    J Mol Biol; 1999 Aug; 291(4):899-911. PubMed ID: 10452895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.