These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 158968)

  • 21. Common role for each of the cGATA-4/5/6 genes in the regulation of cardiac morphogenesis.
    Jiang Y; Tarzami S; Burch JB; Evans T
    Dev Genet; 1998; 22(3):263-77. PubMed ID: 9621433
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [DNA synthesis in postnatal histogenesis of the myocardium and in myocardial infarction, hypertrophy and regeneration (cytophotometric and radioautographic studies)].
    Mirakian VO; Rumiantsev PP
    Tsitologiia; 1968 Aug; 10(8):964-80. PubMed ID: 4238006
    [No Abstract]   [Full Text] [Related]  

  • 23. Expressions and activities of cell cycle regulatory molecules during the transition from myocyte hyperplasia to hypertrophy.
    Poolman RA; Brooks G
    J Mol Cell Cardiol; 1998 Oct; 30(10):2121-35. PubMed ID: 9799664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of reduced hemodynamic loading on morphogenesis of the mouse embryonic heart.
    Hoog TG; Fredrickson SJ; Hsu CW; Senger SM; Dickinson ME; Udan RS
    Dev Biol; 2018 Oct; 442(1):127-137. PubMed ID: 30012423
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellular growth of cardiac muscle after birth.
    Bugaisky L; Zak R
    Tex Rep Biol Med; 1979; 39():123-38. PubMed ID: 162244
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of cardiac hypertrophy and heart failure due to volume overload in the rat.
    Wang X; Ren B; Liu S; Sentex E; Tappia PS; Dhalla NS
    J Appl Physiol (1985); 2003 Feb; 94(2):752-63. PubMed ID: 12531914
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NUCLEIC ACID CONTENT OF TURKEY HEART WITH A NOTE ON HEMODYNAMIC FINDINGS.
    SUMNER RG; HOYLE TC; MCINTOSH HD; WHALEN RE
    Am J Physiol; 1964 Nov; 207():1102-6. PubMed ID: 14237457
    [No Abstract]   [Full Text] [Related]  

  • 28. [The karyogramm of postnatal rat hearts as a function of miotic activity (author's transl)].
    Klinge O
    Verh Dtsch Ges Pathol; 1971; 55():458-64. PubMed ID: 4130747
    [No Abstract]   [Full Text] [Related]  

  • 29. Myocyte cellular hypertrophy and hyperplasia contribute to ventricular wall remodeling in anemia-induced cardiac hypertrophy in rats.
    Olivetti G; Quaini F; Lagrasta C; Ricci R; Tiberti G; Capasso JM; Anversa P
    Am J Pathol; 1992 Jul; 141(1):227-39. PubMed ID: 1385927
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cardiac looping in the chick embryo: a morphological review with special reference to terminological and biomechanical aspects of the looping process.
    Männer J
    Anat Rec; 2000 Jul; 259(3):248-62. PubMed ID: 10861359
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hemodynamic and metabolic activities of propionyl-L-carnitine in rats with pressure-overload cardiac hypertrophy.
    Yang XP; Samaja M; English E; Benatti P; Tarantola M; Cardace G; Motterlini R; Micheletti R; Bianchi G
    J Cardiovasc Pharmacol; 1992 Jul; 20(1):88-98. PubMed ID: 1383636
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of heart morphology: current molecular and cellular perspectives on the coordinated emergence of cardiac form and function.
    Linask KK
    Birth Defects Res C Embryo Today; 2003 Feb; 69(1):14-24. PubMed ID: 12768654
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [DNA synthesis and mitotic division of myocytes of the ventricles, atria and conduction system of the heart during the myocardial development in mammals].
    Rumiantsev PP
    Tsitologiia; 1978 Feb; 20(2):132-41. PubMed ID: 694981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trophic factors for cardiac myocytes.
    Long CS; Kariya K; Karns L; Simpson PC
    J Hypertens Suppl; 1990 Dec; 8(7):S219-24. PubMed ID: 1965655
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of growth hormone and IGF-I on cardiac hypertrophy and gene expression in mice.
    Tanaka N; Ryoke T; Hongo M; Mao L; Rockman HA; Clark RG; Ross J
    Am J Physiol; 1998 Aug; 275(2):H393-9. PubMed ID: 9683425
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cardiac myocyte terminal differentiation. Potential for cardiac regeneration.
    Tam SK; Gu W; Mahdavi V; Nadal-Ginard B
    Ann N Y Acad Sci; 1995 Mar; 752():72-9. PubMed ID: 7755297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chronic hemodynamic unloading regulates the morphologic development of newborn mouse hearts transplanted into the ear of isogeneic adult mice.
    Rossi MA
    Am J Pathol; 1992 Jul; 141(1):183-91. PubMed ID: 1632462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The transcriptional coactivator CAMTA2 stimulates cardiac growth by opposing class II histone deacetylases.
    Song K; Backs J; McAnally J; Qi X; Gerard RD; Richardson JA; Hill JA; Bassel-Duby R; Olson EN
    Cell; 2006 May; 125(3):453-66. PubMed ID: 16678093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The cellular basis of morphogenesis in the embryonic heart.
    DeHaan RL
    UCLA Forum Med Sci; 1970; 10():7-15. PubMed ID: 5521150
    [No Abstract]   [Full Text] [Related]  

  • 40. [Various characteristics of the contractile function of the heart in cardiac hypertrophy during readaptation after adaptation of the body to high-altitude hypoxia].
    Varosian MA; Martirosian MF; Tatinian NG; Petrosian VP
    Kosm Biol Aviakosm Med; 1990; 24(6):42-5. PubMed ID: 2149867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.