These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 15896861)

  • 61. The validity and reliability of the GAITRite system's measurements: A preliminary evaluation.
    McDonough AL; Batavia M; Chen FC; Kwon S; Ziai J
    Arch Phys Med Rehabil; 2001 Mar; 82(3):419-25. PubMed ID: 11245768
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effect of sampling frequency on fractal fluctuations during treadmill walking.
    Marmelat V; Duncan A; Meltz S
    PLoS One; 2019; 14(11):e0218908. PubMed ID: 31697684
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Tactile stimuli affect long-range correlations of stride interval and stride length differently during walking.
    Chien JH; Ambati VNP; Huang CK; Mukherjee M
    Exp Brain Res; 2017 Apr; 235(4):1185-1193. PubMed ID: 28188327
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Locomotion patterns in two South American gymnophthalmid lizards: Vanzosaura rubricauda and Procellosaurinus tetradactylus.
    Renous S; Höfling E; Bels V
    Zoology (Jena); 2008; 111(4):295-308. PubMed ID: 18502108
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synchronization dynamics modulates stride-to-stride fluctuations when walking to an invariant but not to a fractal-like stimulus.
    Vaz JR; Groff BR; Rowen DA; Knarr BA; Stergiou N
    Neurosci Lett; 2019 Jun; 704():28-35. PubMed ID: 30922850
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Spatiotemporal characteristics of spontaneous overground walk-to-run transition.
    De Smet K; Segers V; Lenoir M; De Clercq D
    Gait Posture; 2009 Jan; 29(1):54-8. PubMed ID: 18760925
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Stability and the time-dependent structure of gait variability in walking and running.
    Jordan K; Challis JH; Cusumano JP; Newell KM
    Hum Mov Sci; 2009 Feb; 28(1):113-28. PubMed ID: 19042050
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Detection of co-regulation of local structure and magnitude of stride time variability using a new local detrended fluctuation analysis.
    Ihlen EA; Vereijken B
    Gait Posture; 2014; 39(1):466-71. PubMed ID: 24054349
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Domestic cat walking parallels human constrained optimization: optimization strategies and the comparison of normal and sensory deficient individuals.
    Bertram JE; Gutmann A; Randev J; Hulliger M
    Hum Mov Sci; 2014 Aug; 36():154-66. PubMed ID: 24974156
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Persistent fluctuations in stride intervals under fractal auditory stimulation.
    Marmelat V; Torre K; Beek PJ; Daffertshofer A
    PLoS One; 2014; 9(3):e91949. PubMed ID: 24651455
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Complexity, fractal dynamics and determinism in treadmill ambulation: Implications for clinical biomechanists.
    Hollman JH; Watkins MK; Imhoff AC; Braun CE; Akervik KA; Ness DK
    Clin Biomech (Bristol, Avon); 2016 Aug; 37():91-97. PubMed ID: 27380204
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Describing gait as a sequence of states.
    Forner-Cordero A; Koopman HJ; van der Helm FC
    J Biomech; 2006; 39(5):948-57. PubMed ID: 16488233
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Concurrent validity and intrasession reliability of the IDEEA accelerometry system for the quantification of spatiotemporal gait parameters.
    Maffiuletti NA; Gorelick M; Kramers-de Quervain I; Bizzini M; Munzinger JP; Tomasetti S; Stacoff A
    Gait Posture; 2008 Jan; 27(1):160-3. PubMed ID: 17336070
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Habituation to treadmill walking.
    Van de Putte M; Hagemeister N; St-Onge N; Parent G; de Guise JA
    Biomed Mater Eng; 2006; 16(1):43-52. PubMed ID: 16410643
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A prospective gait analysis study in patients with diplegic cerebral palsy 20 years after selective dorsal rhizotomy.
    Langerak NG; Lamberts RP; Fieggen AG; Peter JC; van der Merwe L; Peacock WJ; Vaughan CL
    J Neurosurg Pediatr; 2008 Mar; 1(3):180-6. PubMed ID: 18352761
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Fractal analysis of gait in people with Parkinson's disease: three minutes is not enough.
    Marmelat V; Meidinger RL
    Gait Posture; 2019 May; 70():229-234. PubMed ID: 30909002
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Peripheral neuropathy does not alter the fractal dynamics of stride intervals of gait.
    Gates DH; Dingwell JB
    J Appl Physiol (1985); 2007 Mar; 102(3):965-71. PubMed ID: 17110519
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Statistical precision and sensitivity of measures of dynamic gait stability.
    Bruijn SM; van Dieën JH; Meijer OG; Beek PJ
    J Neurosci Methods; 2009 Apr; 178(2):327-33. PubMed ID: 19135478
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Nonlinear dynamical model of human gait.
    West BJ; Scafetta N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051917. PubMed ID: 12786188
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Central gait control mechanisms and the stride length - cadence relationship.
    Egerton T; Danoudis M; Huxham F; Iansek R
    Gait Posture; 2011 Jun; 34(2):178-82. PubMed ID: 21550245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.