These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 15896903)
1. Ontogeny of retrograde labeled chemoafferent neurons in the newborn rat nodose-petrosal ganglion complex: an ex vivo preparation. Tolosa JN; Cooper R; Myers AC; McLemore GL; Northington F; Gauda EB Neurosci Lett; 2005 Aug 12-19; 384(1-2):48-53. PubMed ID: 15896903 [TBL] [Abstract][Full Text] [Related]
2. Autonomic microganglion cells: a source of acetylcholine in the rat carotid body. Gauda EB; Cooper R; Johnson SM; McLemore GL; Marshall C J Appl Physiol (1985); 2004 Jan; 96(1):384-91. PubMed ID: 14660500 [TBL] [Abstract][Full Text] [Related]
4. Differential expression of a(2a), A(1)-adenosine and D(2)-dopamine receptor genes in rat peripheral arterial chemoreceptors during postnatal development. Gauda EB; Northington FJ; Linden J; Rosin DL Brain Res; 2000 Jul; 872(1-2):1-10. PubMed ID: 10924669 [TBL] [Abstract][Full Text] [Related]
5. Transmitter diversity in carotid body afferent neurons: dopaminergic and peptidergic phenotypes. Finley JC; Polak J; Katz DM Neuroscience; 1992 Dec; 51(4):973-87. PubMed ID: 1283213 [TBL] [Abstract][Full Text] [Related]
6. Carotid chemoreceptor afferent projections to leptin receptor containing neurons in nucleus of the solitary tract. Ciriello J; Caverson MM Peptides; 2014 Aug; 58():30-5. PubMed ID: 24905621 [TBL] [Abstract][Full Text] [Related]
7. Expression of messenger RNAs for peptides and tyrosine hydroxylase in primary sensory neurons that innervate arterial baroreceptors and chemoreceptors. Czyzyk-Krzeska MF; Bayliss DA; Lawson EE; Millhorn DE Neurosci Lett; 1991 Aug; 129(1):98-102. PubMed ID: 1681484 [TBL] [Abstract][Full Text] [Related]
8. Neurochemical and molecular biological aspects on the resetting of the arterial chemoreceptors in the newborn rat. Holgert H; Hertzberg T; Dagerlind A; Hökfelt T; Lagercrantz H Adv Exp Med Biol; 1993; 337():165-70. PubMed ID: 7509111 [No Abstract] [Full Text] [Related]
9. Effect of hyperoxic exposure during early development on neurotrophin expression in the carotid body and nucleus tractus solitarii. Chavez-Valdez R; Mason A; Nunes AR; Northington FJ; Tankersley C; Ahlawat R; Johnson SM; Gauda EB J Appl Physiol (1985); 2012 May; 112(10):1762-72. PubMed ID: 22422797 [TBL] [Abstract][Full Text] [Related]
10. Studies on the coexistence of substance P with other putative transmitters in the nodose and petrosal ganglia. Helke CJ; Niederer AJ Synapse; 1990; 5(2):144-51. PubMed ID: 1689873 [TBL] [Abstract][Full Text] [Related]
11. The effect of hyperoxia on reactive oxygen species (ROS) in rat petrosal ganglion neurons during development using organotypic slices. Kwak DJ; Kwak SD; Gauda EB Pediatr Res; 2006 Oct; 60(4):371-6. PubMed ID: 16940233 [TBL] [Abstract][Full Text] [Related]
12. Plasticity of tyrosine hydroxylase and vasoactive intestinal peptide messenger RNAs in visceral afferent neurons of the nodose ganglion upon axotomy-induced deafferentation. Zhuo H; Sinclair C; Helke CJ Neuroscience; 1994 Nov; 63(2):617-26. PubMed ID: 7891870 [TBL] [Abstract][Full Text] [Related]
13. Prenatal nicotine affects catecholamine gene expression in newborn rat carotid body and petrosal ganglion. Gauda EB; Cooper R; Akins PK; Wu G J Appl Physiol (1985); 2001 Nov; 91(5):2157-65. PubMed ID: 11641357 [TBL] [Abstract][Full Text] [Related]
14. Developmental expression of tyrosine hydroxylase, D2-dopamine receptor and substance P genes in the carotid body of the rat. Gauda EB; Bamford O; Gerfen CR Neuroscience; 1996 Dec; 75(3):969-77. PubMed ID: 8951888 [TBL] [Abstract][Full Text] [Related]
15. Electrophysiological properties of rat nodose ganglion neurons co-transplanted with carotid bodies into the chick chorioallantoic membrane. Eugenín J; Eyzaguirre C Biol Res; 2005; 38(4):329-34. PubMed ID: 16579513 [TBL] [Abstract][Full Text] [Related]
16. Chemoafferent degeneration and carotid body hypoplasia following chronic hyperoxia in newborn rats. Erickson JT; Mayer C; Jawa A; Ling L; Olson EB; Vidruk EH; Mitchell GS; Katz DM J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):519-26. PubMed ID: 9575300 [TBL] [Abstract][Full Text] [Related]
17. Developmental pattern of M1 and M2 muscarinic gene expression and receptor levels in cat carotid body, petrosal and superior cervical ganglion. Bairam A; Joseph V; Lajeunesse Y; Kinkead R Neuroscience; 2006 May; 139(2):711-21. PubMed ID: 16457956 [TBL] [Abstract][Full Text] [Related]
18. The effect of hyperoxia on reactive oxygen species (ROS) in petrosal and nodose ganglion neurons during development (using organotypic slices). Kwak DJ; Kwak SD; Gauda EB Adv Exp Med Biol; 2006; 580():111-4; discussion 351-9. PubMed ID: 16683706 [No Abstract] [Full Text] [Related]
19. Developmental plasticity of the carotid chemoafferent pathway in rats that are hypoxic during the prenatal period. Peyronnet J; Roux JC; Mamet J; Perrin D; Lachuer J; Pequignot JM; Dalmaz Y Eur J Neurosci; 2007 Nov; 26(10):2865-72. PubMed ID: 18001283 [TBL] [Abstract][Full Text] [Related]
20. Expression of 5-HT3 receptors in primary sensory neurons of the petrosal ganglion of adult rats. Wang ZY; Keith IM; Olson EB; Vidruk EH; Bisgard GE Auton Neurosci; 2002 Jan; 95(1-2):121-4. PubMed ID: 11871776 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]