These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 15897229)
1. Phytosulphokine gene regulation during maize (Zea mays L.) reproduction. Lorbiecke R; Steffens M; Tomm JM; Scholten S; von Wiegen P; Kranz E; Wienand U; Sauter M J Exp Bot; 2005 Jul; 56(417):1805-19. PubMed ID: 15897229 [TBL] [Abstract][Full Text] [Related]
2. Zm401, a short-open reading-frame mRNA or noncoding RNA, is essential for tapetum and microspore development and can regulate the floret formation in maize. Ma J; Yan B; Qu Y; Qin F; Yang Y; Hao X; Yu J; Zhao Q; Zhu D; Ao G J Cell Biochem; 2008 Sep; 105(1):136-46. PubMed ID: 18465785 [TBL] [Abstract][Full Text] [Related]
3. DiSUMO-like DSUL is required for nuclei positioning, cell specification and viability during female gametophyte maturation in maize. Srilunchang KO; Krohn NG; Dresselhaus T Development; 2010 Jan; 137(2):333-45. PubMed ID: 20040499 [TBL] [Abstract][Full Text] [Related]
4. Expression differences between normal and indeterminate1 maize suggest downstream targets of ID1, a floral transition regulator in maize. Coneva V; Zhu T; Colasanti J J Exp Bot; 2007; 58(13):3679-93. PubMed ID: 17928372 [TBL] [Abstract][Full Text] [Related]
5. Floret-specific differences in gene expression and support for the hypothesis that tapetal degeneration of Zea mays L. occurs via programmed cell death. Skibbe DS; Wang X; Borsuk LA; Ashlock DA; Nettleton D; Schnable PS J Genet Genomics; 2008 Oct; 35(10):603-16. PubMed ID: 18937917 [TBL] [Abstract][Full Text] [Related]
6. Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize. Sheehan MJ; Kennedy LM; Costich DE; Brutnell TP Plant J; 2007 Jan; 49(2):338-53. PubMed ID: 17181778 [TBL] [Abstract][Full Text] [Related]
7. Cloning and expression analyses of sucrose non-fermenting-1-related kinase 1 (SnRK1b) gene during development of sorghum and maize endosperm and its implicated role in sugar-to-starch metabolic transition. Jain M; Li QB; Chourey PS Physiol Plant; 2008 Sep; 134(1):161-73. PubMed ID: 18433416 [TBL] [Abstract][Full Text] [Related]
8. Micropylar pollen tube guidance by egg apparatus 1 of maize. Márton ML; Cordts S; Broadhvest J; Dresselhaus T Science; 2005 Jan; 307(5709):573-6. PubMed ID: 15681383 [TBL] [Abstract][Full Text] [Related]
9. Distinctive expression and functional regulation of the maize (Zea mays L.) TOR kinase ortholog. Agredano-Moreno LT; Reyes de la Cruz H; Martínez-Castilla LP; Sánchez de Jiménez E Mol Biosyst; 2007 Nov; 3(11):794-802. PubMed ID: 17940662 [TBL] [Abstract][Full Text] [Related]
10. Characterization of two GL8 paralogs reveals that the 3-ketoacyl reductase component of fatty acid elongase is essential for maize (Zea mays L.) development. Dietrich CR; Perera MA; D Yandeau-Nelson M; Meeley RB; Nikolau BJ; Schnable PS Plant J; 2005 Jun; 42(6):844-61. PubMed ID: 15941398 [TBL] [Abstract][Full Text] [Related]
11. Tissue specific control of the maize (Zea mays L.) embryo, cortical parenchyma, and stele proteomes by RUM1 which regulates seminal and lateral root initiation. Saleem M; Lamkemeyer T; Schützenmeister A; Fladerer C; Piepho HP; Nordheim A; Hochholdinger F J Proteome Res; 2009 May; 8(5):2285-97. PubMed ID: 19267494 [TBL] [Abstract][Full Text] [Related]
12. Construction and screening of subtracted cDNA libraries from limited populations of plant cells: a comparative analysis of gene expression between maize egg cells and central cells. Lê Q; Gutièrrez-Marcos JF; Costa LM; Meyer S; Dickinson HG; Lörz H; Kranz E; Scholten S Plant J; 2005 Oct; 44(1):167-78. PubMed ID: 16167904 [TBL] [Abstract][Full Text] [Related]
13. The independent stage-specific expression of the 18-kDa heat shock protein genes during microsporogenesis in Zea mays L. Atkinson BG; Raizada M; Bouchard RA; Frappier RH; Walden DB Dev Genet; 1993; 14(1):15-26. PubMed ID: 8482009 [TBL] [Abstract][Full Text] [Related]
14. EST generation and analyses towards identifying female gametophyte-specific genes in Zea mays L. Yang H; Kaur N; Kiriakopolos S; McCormick S Planta; 2006 Oct; 224(5):1004-14. PubMed ID: 16718485 [TBL] [Abstract][Full Text] [Related]
15. Actin expression is induced and three isoforms are differentially expressed during germination in Zea mays. Díaz-Camino C; Conde R; Ovsenek N; Villanueva MA J Exp Bot; 2005 Feb; 56(412):557-65. PubMed ID: 15569706 [TBL] [Abstract][Full Text] [Related]
16. Silencing a prohibitin alters plant development and senescence. Chen JC; Jiang CZ; Reid MS Plant J; 2005 Oct; 44(1):16-24. PubMed ID: 16167892 [TBL] [Abstract][Full Text] [Related]
17. Maize rough sheath2 and its Arabidopsis orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone chaperone, to maintain knox gene silencing and determinacy during organogenesis. Phelps-Durr TL; Thomas J; Vahab P; Timmermans MC Plant Cell; 2005 Nov; 17(11):2886-98. PubMed ID: 16243907 [TBL] [Abstract][Full Text] [Related]
18. Distinct patterns of control and expression amongst members of the PEP carboxylase kinase gene family in C4 plants. Shenton M; Fontaine V; Hartwell J; Marsh JT; Jenkins GI; Nimmo HG Plant J; 2006 Oct; 48(1):45-53. PubMed ID: 16925599 [TBL] [Abstract][Full Text] [Related]
19. The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize. Vernoud V; Laigle G; Rozier F; Meeley RB; Perez P; Rogowsky PM Plant J; 2009 Sep; 59(6):883-94. PubMed ID: 19453441 [TBL] [Abstract][Full Text] [Related]