These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 1589723)
1. Synergistic antiviral effect in vitro of azidothymidine and amphotericin B methyl ester in combination on HIV infection. Hansen JE; Nielsen C; Svenningsen A; Witzke N; Mathiesen LR Scand J Infect Dis; 1992; 24(1):35-9. PubMed ID: 1589723 [TBL] [Abstract][Full Text] [Related]
2. In vitro evaluation of mismatched double-stranded RNA (ampligen) for combination therapy in the treatment of acquired immunodeficiency syndrome. Montefiori DC; Robinson WE; Mitchell WM AIDS Res Hum Retroviruses; 1989 Apr; 5(2):193-203. PubMed ID: 2469450 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the combination effect of different antiviral compounds against HIV in vitro. Sørensen AM; Nielsen C; Mathiesen LR; Nielsen JO; Hansen JE Scand J Infect Dis; 1993; 25(3):365-71. PubMed ID: 7689746 [TBL] [Abstract][Full Text] [Related]
4. Pharmacodynamic studies (PD) of didanosine (ddI) alone and in combination with azidothymidine (AZT) in human T-cells; a stochastic biochemical approach to antiretroviral nucleoside drug combination in inhibiting HIV-reverse transcriptase (RT). Periclou AP; Nandy P; Avramis VI In Vivo; 2000; 14(3):377-88. PubMed ID: 10904870 [TBL] [Abstract][Full Text] [Related]
5. Further characterization of sulfated homopolysaccharides as anti-HIV agents. Sugawara I; Itoh W; Kimura S; Mori S; Shimada K Experientia; 1989 Oct; 45(10):996-8. PubMed ID: 2478388 [TBL] [Abstract][Full Text] [Related]
6. Combining New Non-Nucleoside Reverse Transcriptase Inhibitors (RTIs) with AZT Results in Strong Synergism against Multi-RTI-Resistant HIV-1 Strains. Yu F; Li W; Wang L; Dai Y; Lu X; Wang Q; Xie L; Jiang S Molecules; 2018 Jul; 23(7):. PubMed ID: 30004408 [TBL] [Abstract][Full Text] [Related]
7. A highly reliable, sensitive, flow cytometric/fluorometric assay for the evaluation of the anti-HIV activity of antiviral compounds in MT-4 cells. Schols D; Pauwels R; Vanlangendonck F; Balzarini J; De Clercq E J Immunol Methods; 1988 Nov; 114(1-2):27-32. PubMed ID: 2903196 [TBL] [Abstract][Full Text] [Related]
8. Synergistic inhibition of AZT-resistant HIV by AZT combined with poly(I):poly(C12U), without synergistic toxicity to bone marrow progenitor cell elements. Gillespie D; Hubbell HR; Carter WA; Midgette P; Elsasser W; Mullaney R; Strayer DR In Vivo; 1994; 8(3):375-81. PubMed ID: 7803722 [TBL] [Abstract][Full Text] [Related]
9. Derivatives of amphotericin inhibit infection with human immunodeficiency virus in vitro by different modes of action. Hansen JE; Witzke NM; Nielsen C; Mathiesen LR; Teglbjaerg LS; Nielsen CM; Nielsen JO Antiviral Res; 1990 Sep; 14(3):149-59. PubMed ID: 2080870 [TBL] [Abstract][Full Text] [Related]
10. Comparative in vitro antifungal activity of amphotericin B and amphotericin B methyl ester. Howarth WR; Tewari RP; Solotorovsky M Antimicrob Agents Chemother; 1975 Jan; 7(1):58-63. PubMed ID: 1137359 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of HIV-1 replication by amphotericin B methyl ester: selection for resistant variants. Waheed AA; Ablan SD; Mankowski MK; Cummins JE; Ptak RG; Schaffner CP; Freed EO J Biol Chem; 2006 Sep; 281(39):28699-711. PubMed ID: 16882663 [TBL] [Abstract][Full Text] [Related]
12. Synergistic antiviral effect of PEG-asparaginase (ONCASPAR), with protease inhibitor alone and in combination with RT inhibitors against HIV-1 infected T-cells: a model of HIV-1-induced T-cell lymphoma. Avramis VI; Kwock R; Avramis IA; Cohen LJ; Inderlied C In Vivo; 2001; 15(1):1-9. PubMed ID: 11286117 [TBL] [Abstract][Full Text] [Related]
13. AZT resistance in isolates of HIV. Richman DD Immunodefic Rev; 1991; 2(4):315-8. PubMed ID: 2059436 [TBL] [Abstract][Full Text] [Related]
14. Anti-HIV-1 activity of sulfated amphotericin B in vitro. Otake T; Miyano K; Mori H; Morimoto M; Ueba N; Kunita N; Nakashima H; Kurimura T Antiviral Res; 1991 Oct; 16(3):243-55. PubMed ID: 1805684 [TBL] [Abstract][Full Text] [Related]
15. Antioxidant-mediated increases in the antifungal activities of amphotericin B and its methyl ester derivative. Beggs WH; Andrews FA Res Commun Chem Pathol Pharmacol; 1980 Aug; 29(2):389-92. PubMed ID: 6997948 [TBL] [Abstract][Full Text] [Related]
16. Comparative in vitro antifungal susceptibility activity of amphotericin B versus amphotericin B methyl ester against Candida albicans ocular isolates. Thanathanee O; Miller D; Ringel DM; Schaffner CP; Alfonso EC; O'Brien TP J Ocul Pharmacol Ther; 2012 Dec; 28(6):589-92. PubMed ID: 22788845 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of human immunodeficiency virus type 1 multiplication by transforming growth factor beta 1 and AZT in HIV-1-infected myeloid cells. McKiel V; Gu Z; Wainberg MA; Hiscott J J Interferon Cytokine Res; 1995 Oct; 15(10):849-55. PubMed ID: 8564706 [TBL] [Abstract][Full Text] [Related]
18. N-Methyl-N-D-fructosyl amphotericin B methyl ester (MF-AME), a novel antifungal agent of low toxicity: monomer/micelle control over selective toxicity. Cybulska B; Gadomska I; Mazerski J; Borowski JGE ; Cheron M; Bolard J Acta Biochim Pol; 2000; 47(1):121-31. PubMed ID: 10961685 [TBL] [Abstract][Full Text] [Related]
19. Granulocyte-macrophage colony-stimulating factor and zidovudine in the treatment of neutropenia and human immunodeficiency virus infection. Hewitt RG; Morse GD Pharmacotherapy; 1992; 12(6):455-61. PubMed ID: 1492010 [TBL] [Abstract][Full Text] [Related]
20. [A new drug in a new role: dipyridamole in the treatment of HIV-1 infections?]. Szebeni J Orv Hetil; 1991 Sep; 132(35):1907-12. PubMed ID: 1923462 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]