These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 15897605)

  • 61. Purification of oxysterol binding protein from hamster liver cytosol.
    Dawson PA; Van der Westhuyzen DR; Goldstein JL; Brown MS
    J Biol Chem; 1989 May; 264(15):9046-52. PubMed ID: 2722817
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Isolation of sterol-resistant Chinese hamster ovary cells with genetic deficiencies in both Insig-1 and Insig-2.
    Lee PC; Sever N; Debose-Boyd RA
    J Biol Chem; 2005 Jul; 280(26):25242-9. PubMed ID: 15866869
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Rat liver cytosol oxysterol-binding protein. Characterization and comparison with the HTC cell protein.
    Beseme F; Astruc ME; Defay R; Crastes de Paulet A
    FEBS Lett; 1987 Jan; 210(1):97-103. PubMed ID: 3803583
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Correlation between oxysterol binding to a cytosolic binding protein and potency in the repression of hydroxymethylglutaryl coenzyme A reductase.
    Taylor FR; Saucier SE; Shown EP; Parish EJ; Kandutsch AA
    J Biol Chem; 1984 Oct; 259(20):12382-7. PubMed ID: 6490619
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Esterification of cholesterol and 25-hydroxycholesterol by rat liver microsomes.
    Lichtenstein AH; Brecher P
    Biochim Biophys Acta; 1983 May; 751(3):340-8. PubMed ID: 6849947
    [TBL] [Abstract][Full Text] [Related]  

  • 66. High-affinity binding sites for oxygenated sterols in rat liver microsomes: possible identity with antiestrogen binding sites.
    Hwang PL
    Biochim Biophys Acta; 1990 Feb; 1033(2):154-61. PubMed ID: 2306459
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Identification of a novel sulfonated oxysterol, 5-cholesten-3beta,25-diol 3-sulfonate, in hepatocyte nuclei and mitochondria.
    Ren S; Hylemon P; Zhang ZP; Rodriguez-Agudo D; Marques D; Li X; Zhou H; Gil G; Pandak WM
    J Lipid Res; 2006 May; 47(5):1081-90. PubMed ID: 16505492
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Comparative structural analysis of lipid binding START domains.
    Thorsell AG; Lee WH; Persson C; Siponen MI; Nilsson M; Busam RD; Kotenyova T; Schüler H; Lehtiö L
    PLoS One; 2011; 6(6):e19521. PubMed ID: 21738568
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Purified NPC1 protein: II. Localization of sterol binding to a 240-amino acid soluble luminal loop.
    Infante RE; Radhakrishnan A; Abi-Mosleh L; Kinch LN; Wang ML; Grishin NV; Goldstein JL; Brown MS
    J Biol Chem; 2008 Jan; 283(2):1064-75. PubMed ID: 17989072
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Generation of regulatory oxysterols: 26-hydroxylation of cholesterol by ovarian mitochondria.
    Rennert H; Fischer RT; Alvarez JG; Trzaskos JM; Strauss JF
    Endocrinology; 1990 Aug; 127(2):738-46. PubMed ID: 2373053
    [TBL] [Abstract][Full Text] [Related]  

  • 71. STARD4 Membrane Interactions and Sterol Binding.
    Iaea DB; Dikiy I; Kiburu I; Eliezer D; Maxfield FR
    Biochemistry; 2015 Aug; 54(30):4623-36. PubMed ID: 26168008
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Sterols and intracellular vesicular trafficking: lessons from the study of NPC1.
    Strauss JF; Liu P; Christenson LK; Watari H
    Steroids; 2002 Nov; 67(12):947-51. PubMed ID: 12398991
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Binding and intracellular transport of 25-hydroxycholesterol by Niemann-Pick C2 protein.
    Petersen D; Reinholdt P; Szomek M; Hansen SK; Poongavanam V; Dupont A; Heegaard CW; Krishnan K; Fujiwara H; Covey DF; Ory DS; Kongsted J; Wüstner D
    Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183063. PubMed ID: 31521631
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of lipid composition on the transfer of sterols mediated by non-specific lipid transfer protein (sterol carrier protein2).
    Billheimer JT; Gaylor JL
    Biochim Biophys Acta; 1990 Sep; 1046(2):136-43. PubMed ID: 2171663
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Phosphatidylinositol phosphates modulate interactions between the StarD4 sterol trafficking protein and lipid membranes.
    Zhang X; Xie H; Iaea D; Khelashvili G; Weinstein H; Maxfield FR
    J Biol Chem; 2022 Jul; 298(7):102058. PubMed ID: 35605664
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Different forms of the oxysterol-binding protein. Binding kinetics and stability.
    Kandutsch AA; Taylor FR; Shown EP
    J Biol Chem; 1984 Oct; 259(20):12388-97. PubMed ID: 6490620
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Differences in the control of sterol metabolism between mouse and rat Leydig cells.
    Quinn PG; Georgiou M; Payne AH
    Endocrinology; 1985 Jun; 116(6):2300-5. PubMed ID: 3996314
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cholesterol interaction with recombinant human sterol carrier protein-2.
    Colles SM; Woodford JK; Moncecchi D; Myers-Payne SC; McLean LR; Billheimer JT; Schroeder F
    Lipids; 1995 Sep; 30(9):795-803. PubMed ID: 8577222
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Role of STARD4 and NPC1 in intracellular sterol transport.
    Maxfield FR; Iaea DB; Pipalia NH
    Biochem Cell Biol; 2016 Dec; 94(6):499-506. PubMed ID: 27421092
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Immunolocalization of steroidogenic acute regulatory protein-related lipid transfer (START) domain-containing proteins in the developing cerebellum of normal and hypothyroid rats.
    Chang IY; Ohn T; Ko GS; Yoon Y; Kim JW; Yoon SP
    J Chem Neuroanat; 2012 Jan; 43(1):28-33. PubMed ID: 22024186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.