These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1589763)

  • 1. The role of crystal polarity in alpha-amino acid crystals for induced nucleation of ice.
    Gavish M; Wang JL; Eisenstein M; Lahav M; Leiserowitz L
    Science; 1992 May; 256(5058):815-8. PubMed ID: 1589763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Source of Electrofreezing of Supercooled Water by Polar Crystals.
    Belitzky A; Mishuk E; Ehre D; Lahav M; Lubomirsky I
    J Phys Chem Lett; 2016 Jan; 7(1):43-6. PubMed ID: 26641500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polar Imperfections in Amino Acid Crystals: Design, Structure, and Emerging Functionalities.
    Meirzadeh E; Weissbuch I; Ehre D; Lahav M; Lubomirsky I
    Acc Chem Res; 2018 May; 51(5):1238-1248. PubMed ID: 29676901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ice crystals specifically decorate hydrophilic sites on freeze-fractured models membranes.
    Walzthöny D; Moor H; Gross H
    Ultramicroscopy; 1981; 6(3):259-66. PubMed ID: 7281365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic control of heterogeneous ice nucleation with nanophase magnetite: Biophysical and agricultural implications.
    Kobayashi A; Horikawa M; Kirschvink JL; Golash HN
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5383-5388. PubMed ID: 29735681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chiral symmetry breaking via crystallization of the glycine and α-amino acid system: a mathematical model.
    Blanco C; Hochberg D
    Phys Chem Chem Phys; 2011 Jul; 13(28):12920-34. PubMed ID: 21695347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical Nature of Heterogeneous Electrofreezing of Supercooled Water Revealed on Polar (Pyroelectric) Surfaces.
    Javitt LF; Curland S; Weissbuch I; Ehre D; Lahav M; Lubomirsky I
    Acc Chem Res; 2022 May; 55(10):1383-1394. PubMed ID: 35504292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ice nucleation on BaF2(111).
    Conrad P; Ewing GE; Karlinsey RL; Sadtchenko V
    J Chem Phys; 2005 Feb; 122(6):064709. PubMed ID: 15740398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The separation of racemic crystals into enantiomers by chiral block copolymers.
    Mastai Y; Sedlák M; Cölfen H; Antonietti M
    Chemistry; 2002 Jun; 8(11):2429-37. PubMed ID: 12180321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A solution to the observed Z' = 2 preference in the crystal structures of hydrophobic amino acids.
    Görbitz CH; Vestli K; Orlando R
    Acta Crystallogr B; 2009 Jun; 65(Pt 3):393-400. PubMed ID: 19461150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antifreeze effect of carboxylated ε-poly-L-lysine on the growth kinetics of ice crystals.
    Vorontsov DA; Sazaki G; Hyon SH; Matsumura K; Furukawa Y
    J Phys Chem B; 2014 Aug; 118(34):10240-9. PubMed ID: 25113284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quench cooled ice crystal imprint size: a micro-method for study of macromolecular hydration.
    Cameron IL; Hunter KE; Fullerton GD
    Scanning Microsc; 1988 Jun; 2(2):885-98. PubMed ID: 3399855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercooling-Promoting (Anti-ice Nucleation) Substances.
    Fujikawa S; Kuwabara C; Kasuga J; Arakawa K
    Adv Exp Med Biol; 2018; 1081():289-320. PubMed ID: 30288716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth suppression of ice crystal basal face in the presence of a moderate ice-binding protein does not confer hyperactivity.
    Bayer-Giraldi M; Sazaki G; Nagashima K; Kipfstuhl S; Vorontsov DA; Furukawa Y
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):7479-7484. PubMed ID: 29967176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps.
    Orme CA; Noy A; Wierzbicki A; McBride MT; Grantham M; Teng HH; Dove PM; DeYoreo JJ
    Nature; 2001 Jun; 411(6839):775-9. PubMed ID: 11459051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Controlled Nucleation of Ice Crystals on the Primary Drying Stage during Lyophilization.
    Kawasaki H; Shimanouchi T; Takahashi K; Kimura Y
    Chem Pharm Bull (Tokyo); 2018; 66(12):1122-1130. PubMed ID: 30504629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective nucleation of ice crystals depending on the inclination angle of nanostructures.
    Xu Y; Shen Y; Tao J; Lu Y; Chen H; Hou W; Jiang B
    Phys Chem Chem Phys; 2020 Jan; 22(3):1168-1173. PubMed ID: 31848543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of an antifreeze protein from the polar diatom Fragilariopsis cylindrus and its relevance in sea ice.
    Bayer-Giraldi M; Weikusat I; Besir H; Dieckmann G
    Cryobiology; 2011 Dec; 63(3):210-9. PubMed ID: 21906587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the mechanism of ice binding by type III antifreeze proteins.
    Antson AA; Smith DJ; Roper DI; Lewis S; Caves LS; Verma CS; Buckley SL; Lillford PJ; Hubbard RE
    J Mol Biol; 2001 Jan; 305(4):875-89. PubMed ID: 11162099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships between ice crystal size, water content and proton NMR relaxation times in cells.
    Cameron IL; Hunter KE; Ord VA; Fullerton GD
    Physiol Chem Phys Med NMR; 1985; 17(4):371-86. PubMed ID: 3836419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.