These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
471 related articles for article (PubMed ID: 15897959)
1. Antifreeze glycoproteins from the antarctic fish Dissostichus mawsoni studied by differential scanning calorimetry (DSC) in combination with nanolitre osmometry. Ramløv H; DeVries AL; Wilson PW Cryo Letters; 2005; 26(2):73-84. PubMed ID: 15897959 [TBL] [Abstract][Full Text] [Related]
2. The mechanism by which fish antifreeze proteins cause thermal hysteresis. Kristiansen E; Zachariassen KE Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins. Parody-Morreale A; Murphy KP; Di Cera E; Fall R; DeVries AL; Gill SJ Nature; 1988 Jun; 333(6175):782-3. PubMed ID: 3386720 [TBL] [Abstract][Full Text] [Related]
4. Differential scanning calorimetry studies on an Antarctic nematode (Panagrolaimus davidi) which survives intracellular freezing. Wharton DA; Block W Cryobiology; 1997 Mar; 34(2):114-21. PubMed ID: 9130384 [TBL] [Abstract][Full Text] [Related]
5. A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins. Li QZ; Yeh Y; Liu JJ; Feeney RE; Krishnan VV J Chem Phys; 2006 May; 124(20):204702. PubMed ID: 16774359 [TBL] [Abstract][Full Text] [Related]
6. The basis for hyperactivity of antifreeze proteins. Scotter AJ; Marshall CB; Graham LA; Gilbert JA; Garnham CP; Davies PL Cryobiology; 2006 Oct; 53(2):229-39. PubMed ID: 16887111 [TBL] [Abstract][Full Text] [Related]
13. Ice Growth Habits in Solutions Containing Insect Thermal Hysteresis Proteins Compared to Those with Fish Antifreeze Proteins. Wilson PW Cryo Letters; 2020; 41(2):57-61. PubMed ID: 33988654 [TBL] [Abstract][Full Text] [Related]
14. Antifreeze glycoproteins from antarctic notothenioid fishes fail to protect the rat cardiac explant during hypothermic and freezing preservation. Wang T; Zhu Q; Yang X; Layne JR; Devries AL Cryobiology; 1994 Apr; 31(2):185-92. PubMed ID: 8004999 [TBL] [Abstract][Full Text] [Related]
15. Apparatus for single ice crystal growth from the melt. Zepeda S; Nakatsubo S; Furukawa Y Rev Sci Instrum; 2009 Nov; 80(11):115102. PubMed ID: 19947752 [TBL] [Abstract][Full Text] [Related]
16. Ice nucleation and antinucleation in nature. Zachariassen KE; Kristiansen E Cryobiology; 2000 Dec; 41(4):257-79. PubMed ID: 11222024 [TBL] [Abstract][Full Text] [Related]
17. A hyperactive, Ca2+-dependent antifreeze protein in an Antarctic bacterium. Gilbert JA; Davies PL; Laybourn-Parry J FEMS Microbiol Lett; 2005 Apr; 245(1):67-72. PubMed ID: 15796981 [TBL] [Abstract][Full Text] [Related]
18. Molecular recognition and binding of thermal hysteresis proteins to ice. Madura JD; Baran K; Wierzbicki A J Mol Recognit; 2000; 13(2):101-13. PubMed ID: 10822254 [TBL] [Abstract][Full Text] [Related]
19. Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Graether SP; Kuiper MJ; Gagné SM; Walker VK; Jia Z; Sykes BD; Davies PL Nature; 2000 Jul; 406(6793):325-8. PubMed ID: 10917537 [TBL] [Abstract][Full Text] [Related]
20. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity. Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]