These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 15898545)

  • 1. Applications of improved first Rayleigh-Sommerfeld method to analyze the performance of cylindrical microlenses with different f-numbers.
    Ye JS; Gu BY; Dong BZ; Liu ST
    J Opt Soc Am A Opt Image Sci Vis; 2005 May; 22(5):862-9. PubMed ID: 15898545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved first Rayleigh-sommerfeld method for analysis of cylindrical microlenses with small f-numbers.
    Ye JS; Gu BY; Dong BZ; Liu ST
    Opt Lett; 2004 Oct; 29(20):2345-7. PubMed ID: 15532262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved first Rayleigh-Sommerfeld method applied to metallic cylindrical focusing micro mirrors.
    Ye JS; Zhang Y; Hane K
    Opt Express; 2009 Apr; 17(9):7348-60. PubMed ID: 19399113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of a cylindrical microlens array with long focal depth by a rigorous boundary-element method and scalar approximations.
    Ye JS; Dong BZ; Gu BY; Liu ST
    Appl Opt; 2004 Sep; 43(27):5183-92. PubMed ID: 15473238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collimating cylindrical diffractive lenses: rigorous electromagnetic analysis and scalar approximation.
    Glytsis EN; Harrigan ME; Hirayama K; Gaylord TK
    Appl Opt; 1998 Jan; 37(1):34-43. PubMed ID: 18268557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of fabrication errors on the performance of cylindrical diffractive lenses: rigorous boundary-element method and scalar approximation.
    Glytsis EN; Harrigan ME; Gaylord TK; Hirayama K
    Appl Opt; 1998 Oct; 37(28):6591-602. PubMed ID: 18301465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of microlenses with long focal depth based on the general focal length function.
    Lin J; Liu J; Ye J; Liu S
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jun; 24(6):1747-51. PubMed ID: 17491644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rigorous electromagnetic analysis of the common focusing characteristics of a cylindrical microlens with long focal depth and under multiwavelength illumination.
    Wang SQ; Liu J; Gu BY; Wang YQ; Hu B; Sun XD; Di S
    J Opt Soc Am A Opt Image Sci Vis; 2007 Feb; 24(2):512-6. PubMed ID: 17206267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive focusing analysis of various Fresnel zone plates.
    Cao Q; Jahns J
    J Opt Soc Am A Opt Image Sci Vis; 2004 Apr; 21(4):561-71. PubMed ID: 15078028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling microlenses by use of vectorial field rays and diffraction integrals.
    Alvarez-Cabanillas MA; Xu F; Fainman Y
    Appl Opt; 2004 Apr; 43(11):2242-50. PubMed ID: 15098825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metallic nanowires can lead to wavelength-scale microlenses and microlens arrays.
    Zaiba S; Kouriba T; Ziane O; Stéphan O; Bosson J; Vitrant G; Baldeck PL
    Opt Express; 2012 Jul; 20(14):15516-21. PubMed ID: 22772246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling focusing characteristics of low Fnumber diffractive optical elements with continuous relief fabricated by laser direct writing.
    Shan M; Tan J
    Opt Express; 2007 Dec; 15(25):17032-7. PubMed ID: 19550995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New design model for high efficiency cylindrical diffractive microlenses.
    Li Y; Zhao H; Feng SF; Ye JS; Wang XK; Sun WF; Han P; Zhang Y
    Sci Rep; 2017 Nov; 7(1):16334. PubMed ID: 29180786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatic analysis of harmonic Fresnel lenses by FDTD and angular spectrum methods.
    Yang J; Twardowski P; Gérard P; Yu W; Fontaine J
    Appl Opt; 2018 Jul; 57(19):5281-5287. PubMed ID: 30117815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binary sub-wavelength diffractive lenses with long focal depth and high transverse resolution.
    Feng D; Ou P; Feng LS; Hu SL; Zhang CX
    Opt Express; 2008 Dec; 16(25):20968-73. PubMed ID: 19065236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of low F-number dual micro-axilens array with binary structures by rigorous electromagnetic theory.
    Feng D; Feng LS; Zhang CX
    Opt Express; 2011 May; 19(11):10959-66. PubMed ID: 21643356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design method for small-f-number microlenses based on a finite thickness model in combination with the Yang-Gu phase-retrieval algorithm.
    Rydberg C; Gu BY; Yang GZ
    J Opt Soc Am A Opt Image Sci Vis; 2007 Feb; 24(2):517-21. PubMed ID: 17206268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pixel size adjustment in coherent diffractive imaging within the Rayleigh-Sommerfeld regime.
    Claus D; Rodenburg JM
    Appl Opt; 2015 Mar; 54(8):1936-44. PubMed ID: 25968368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theories for the design of a hybrid refractive-diffractive superresolution lens with high numerical aperture.
    Liu H; Yan Y; Yi D; Jin G
    J Opt Soc Am A Opt Image Sci Vis; 2003 May; 20(5):913-24. PubMed ID: 12747438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entirely electromagnetic analysis of microlenses without a beam-shaping aperture.
    Liu J; Dong BZ; Gu BY; Yang GZ
    Appl Opt; 2001 Apr; 40(10):1686-91. PubMed ID: 18357165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.