These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 15898554)

  • 1. Iterative zonal wave-front estimation algorithm for optical testing with general-shaped pupils.
    Zou W; Rolland JP
    J Opt Soc Am A Opt Image Sci Vis; 2005 May; 22(5):938-51. PubMed ID: 15898554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the eye's wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor.
    Salmon TO; Thibos LN; Bradley A
    J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2457-65. PubMed ID: 9729857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized wave-front reconstruction algorithm applied in a Shack-Hartmann Test.
    Zou W; Zhang Z
    Appl Opt; 2000 Jan; 39(2):250-68. PubMed ID: 18337893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shack Hartmann wave-front measurement with a large F-number plastic microlens array.
    Yoon GY; Jitsuno T; Nakatsuka M; Nakai S
    Appl Opt; 1996 Jan; 35(1):188-92. PubMed ID: 21068997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wave-front reconstruction with a shack-hartmann sensor with an iterative spline fitting method.
    Groening S; Sick B; Donner K; Pfund J; Lindlein N; Schwider J
    Appl Opt; 2000 Feb; 39(4):561-7. PubMed ID: 18337926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement in error propagation in the Shack-Hartmann-type zonal wavefront sensors.
    Pathak B; Boruah BR
    J Opt Soc Am A Opt Image Sci Vis; 2017 Dec; 34(12):2194-2202. PubMed ID: 29240094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamental performance of transverse wind estimator from Shack-Hartmann wave-front sensor measurements.
    Li Z; Li X
    Opt Express; 2018 Apr; 26(9):11859-11876. PubMed ID: 29716103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iterative wave-front reconstruction in the Fourier domain.
    Bond CZ; Correia CM; Sauvage JF; Neichel B; Fusco T
    Opt Express; 2017 May; 25(10):11452-11465. PubMed ID: 28788711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iteratively weighted centroiding for Shack-Hartmann wave-front sensors.
    Baker KL; Moallem MM
    Opt Express; 2007 Apr; 15(8):5147-59. PubMed ID: 19532765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave front sensor and zonal control algorithm.
    Dayton D; Sandven S; Gonglewski J; Browne S; Rogers S; McDermott S
    Opt Express; 1997 Nov; 1(11):338-46. PubMed ID: 19377554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a shack-hartmann wave-front sensor.
    Mansell JD; Hennawi J; Gustafson EK; Fejer MM; Byer RL; Clubley D; Yoshida S; Reitze DH
    Appl Opt; 2001 Jan; 40(3):366-74. PubMed ID: 18357010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic range expansion of a Shack-Hartmann sensor by use of a modified unwrapping algorithm.
    Pfund J; Lindlein N; Schwider J
    Opt Lett; 1998 Jul; 23(13):995-7. PubMed ID: 18087407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid-crystal Hartmann wave-front scanner.
    Olivier S; Laude V; Huignard JP
    Appl Opt; 2000 Aug; 39(22):3838-46. PubMed ID: 18349960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics.
    Nicolle M; Fusco T; Rousset G; Michau V
    Opt Lett; 2004 Dec; 29(23):2743-5. PubMed ID: 15605491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor.
    Liang J; Grimm B; Goelz S; Bille JF
    J Opt Soc Am A Opt Image Sci Vis; 1994 Jul; 11(7):1949-57. PubMed ID: 8071736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wave-front sensing and deformable-mirror control in strong scintillation.
    Roggemann MC; Koivunen AC
    J Opt Soc Am A Opt Image Sci Vis; 2000 May; 17(5):911-9. PubMed ID: 10795640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring eye aberrations with Hartmann-Shack wave-front sensors: should the irradiance distribution across the eye pupil be taken into account?
    BarĂ¡ S
    J Opt Soc Am A Opt Image Sci Vis; 2003 Dec; 20(12):2237-45. PubMed ID: 14686502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental measurements of estimator bias and the signal-to-noise ratio for deconvolution from wave-front sensing.
    Dayton D; Gonglewski J; Rogers S
    Appl Opt; 1997 Jun; 36(17):3895-903. PubMed ID: 18253416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wave-front measurement errors from restricted concentric subdomains.
    Goldberg KA; Geary K
    J Opt Soc Am A Opt Image Sci Vis; 2001 Sep; 18(9):2146-52. PubMed ID: 11551047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavefront control in adaptive microscopy using Shack-Hartmann sensors with arbitrarily shaped pupils.
    Dong B; Booth MJ
    Opt Express; 2018 Jan; 26(2):1655-1669. PubMed ID: 29402037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.