BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 15898777)

  • 1. Low-temperature polyol synthesis of AuCuSn2 and AuNiSn2: using solution chemistry to access ternary intermetallic compounds as nanocrystals.
    Leonard BM; Bhuvanesh NS; Schaak RE
    J Am Chem Soc; 2005 May; 127(20):7326-7. PubMed ID: 15898777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multistep solution-mediated formation of AuCuSn2: mechanistic insights for the guided design of intermetallic solid-state materials and complex multimetal nanocrystals.
    Leonard BM; Schaak RE
    J Am Chem Soc; 2006 Sep; 128(35):11475-82. PubMed ID: 16939271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-temperature solution synthesis of the non-equilibrium ordered intermetallic compounds Au3Fe, Au3Co, and Au3Ni as nanocrystals.
    Vasquez Y; Luo Z; Schaak RE
    J Am Chem Soc; 2008 Sep; 130(36):11866-7. PubMed ID: 18707101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metallurgy in a beaker: nanoparticle toolkit for the rapid low-temperature solution synthesis of functional multimetallic solid-state materials.
    Schaak RE; Sra AK; Leonard BM; Cable RE; Bauer JC; Han YF; Means J; Teizer W; Vasquez Y; Funck ES
    J Am Chem Soc; 2005 Mar; 127(10):3506-15. PubMed ID: 15755172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of atomically ordered AuCu and AuCu(3) nanocrystals from bimetallic nanoparticle precursors.
    Sra AK; Schaak RE
    J Am Chem Soc; 2004 Jun; 126(21):6667-72. PubMed ID: 15161294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reacting the unreactive: a toolbox of low-temperature solution-mediated reactions for the facile interconversion of nanocrystalline intermetallic compounds.
    Cable RE; Schaak RE
    J Am Chem Soc; 2006 Aug; 128(30):9588-9. PubMed ID: 16866486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-controlled conversion of beta-Sn nanocrystals into intermetallic M-Sn (M=Fe, Co, Ni, Pd) nanocrystals.
    Chou NH; Schaak RE
    J Am Chem Soc; 2007 Jun; 129(23):7339-45. PubMed ID: 17503817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of monodisperse spherical nanocrystals.
    Park J; Joo J; Kwon SG; Jang Y; Hyeon T
    Angew Chem Int Ed Engl; 2007; 46(25):4630-60. PubMed ID: 17525914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural evolution of nanocrystalline silicon thin films synthesized in high-density, low-temperature reactive plasmas.
    Cheng Q; Xu S; Ostrikov KK
    Nanotechnology; 2009 May; 20(21):215606. PubMed ID: 19423937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterobimetallic Single-Source Precursors: A Springboard to the Synthesis of Binary Intermetallics.
    Daniels CL; Mendivelso-Perez DL; Rosales BA; You D; Sahu S; Jones JS; Smith EA; Gabbaï FP; Vela J
    ACS Omega; 2019 Mar; 4(3):5197-5203. PubMed ID: 31459692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From (Au5Sn + AuSn) physical mixture to phase pure AuSn and Au5Sn intermetallic nanocrystals with tailored morphology: digestive ripening assisted approach.
    Arora N; Jagirdar BR
    Phys Chem Chem Phys; 2014 Jun; 16(23):11381-9. PubMed ID: 24797383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A family of ductile intermetallic compounds.
    Gschneidner K; Russell A; Pecharsky A; Morris J; Zhang Z; Lograsso T; Hsu D; Lo CH; Ye Y; Slager A; Kesse D
    Nat Mater; 2003 Sep; 2(9):587-91. PubMed ID: 12942069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft-Chemical Method for Synthesizing Intermetallic Antimonide Nanocrystals from Ternary Chalcogenide.
    Jiang Y; Yuan L; Xu Y; Ma J; Sun Y; Gao X; Huang K; Feng S
    Langmuir; 2019 Nov; 35(47):15131-15136. PubMed ID: 31682456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mg(5.23)Sm(0.77)Sb4: an ordered superstructure derived from the Mg3Sb2 structure type.
    Gupta S; Ganguli AK; Corbett JD
    Inorg Chem; 2006 Oct; 45(20):8175-8. PubMed ID: 16999415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets.
    Chan EM; Alivisatos AP; Mathies RA
    J Am Chem Soc; 2005 Oct; 127(40):13854-61. PubMed ID: 16201806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and magnetic properties of silica-coated FePt nanocrystals.
    Lee DC; Mikulec FV; Pelaez JM; Koo B; Korgel BA
    J Phys Chem B; 2006 Jun; 110(23):11160-6. PubMed ID: 16771378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multilayer model for self-propagating high-temperature synthesis of intermetallic compounds.
    Baras F; Kondepudi D
    J Phys Chem B; 2007 Jun; 111(23):6457-68. PubMed ID: 17508733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization.
    Kumta PN; Sfeir C; Lee DH; Olton D; Choi D
    Acta Biomater; 2005 Jan; 1(1):65-83. PubMed ID: 16701781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition.
    Pan D; An L; Sun Z; Hou W; Yang Y; Yang Z; Lu Y
    J Am Chem Soc; 2008 Apr; 130(17):5620-1. PubMed ID: 18396869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.