BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 15898787)

  • 1. Measurement of ribose carbon chemical shift tensors for A-form RNA by liquid crystal NMR spectroscopy.
    Bryce DL; Grishaev A; Bax A
    J Am Chem Soc; 2005 May; 127(20):7387-96. PubMed ID: 15898787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical shift tensors of protonated base carbons in helical RNA and DNA from NMR relaxation and liquid crystal measurements.
    Ying J; Grishaev A; Bryce DL; Bax A
    J Am Chem Soc; 2006 Sep; 128(35):11443-54. PubMed ID: 16939267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of five dipolar couplings from a single 3D NMR multiplet applied to the study of RNA dynamics.
    O'Neil-Cabello E; Bryce DL; Nikonowicz EP; Bax A
    J Am Chem Soc; 2004 Jan; 126(1):66-7. PubMed ID: 14709062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-state NMR and quantum chemical investigations of 13Calpha shielding tensor magnitudes and orientations in peptides: determining phi and psi torsion angles.
    Wi S; Sun H; Oldfield E; Hong M
    J Am Chem Soc; 2005 May; 127(17):6451-8. PubMed ID: 15853353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and theoretical investigation of the 13C and 15N chemical shift tensors in melanostatin-exploring the chemical shift tensor as a structural probe.
    Strohmeier M; Grant DM
    J Am Chem Soc; 2004 Jan; 126(3):966-77. PubMed ID: 14733574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insight into the CSA tensors of nucleobase carbons in RNA polynucleotides from solution measurements of residual CSA: towards new long-range orientational constraints.
    Hansen AL; Al-Hashimi HM
    J Magn Reson; 2006 Apr; 179(2):299-307. PubMed ID: 16431143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of 13C NMR chemical shifts on conformations of rna nucleosides and nucleotides.
    Ebrahimi M; Rossi P; Rogers C; Harbison GS
    J Magn Reson; 2001 May; 150(1):1-9. PubMed ID: 11330976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy.
    Wylie BJ; Franks WT; Rienstra CM
    J Phys Chem B; 2006 Jun; 110(22):10926-36. PubMed ID: 16771346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR chemical shift powder pattern recoupling at high spinning speed and theoretical tensor evaluation applied to silk fibroin.
    Witter R; Sternberg U; Ulrich AS
    J Am Chem Soc; 2006 Feb; 128(7):2236-43. PubMed ID: 16478177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of large elongated RNA by NMR carbon relaxation.
    Hansen AL; Al-Hashimi HM
    J Am Chem Soc; 2007 Dec; 129(51):16072-82. PubMed ID: 18047338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 31P chemical shift tensors for canonical and non-canonical conformations of nucleic acids: a DFT study and NMR implications.
    Precechtelová J; Padrta P; Munzarová ML; Sklenár V
    J Phys Chem B; 2008 Mar; 112(11):3470-8. PubMed ID: 18298109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing local structure in zeolite frameworks: ultrahigh-field NMR measurements and accurate first-principles calculations of zeolite 29Si magnetic shielding tensors.
    Brouwer DH; Enright GD
    J Am Chem Soc; 2008 Mar; 130(10):3095-105. PubMed ID: 18281985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-state NMR spectra and long intradimer bonds in the pi-[TCNE]22- dianion.
    Strohmeier M; Barich DH; Grant DM; Miller JS; Pugmire RJ; Simons J
    J Phys Chem A; 2006 Jun; 110(25):7962-9. PubMed ID: 16789786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the glycosidic bond angle chi in RNA from cross-correlated relaxation of CH dipolar coupling and N chemical shift anisotropy.
    Duchardt E; Richter C; Ohlenschläger O; Görlach M; Wöhnert J; Schwalbe H
    J Am Chem Soc; 2004 Feb; 126(7):1962-70. PubMed ID: 14971929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular-orientation analysis based on alignment-induced TROSY chemical shift changes.
    Tate S; Shimahara H; Utsunomiya-Tate N
    J Magn Reson; 2004 Dec; 171(2):284-92. PubMed ID: 15546755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the orientations for the 17O NMR tensors in a polycrystalline l-alanine hydrochloride.
    Yamada K; Shimizu T; Yamazaki T; Ohki S
    Solid State Nucl Magn Reson; 2008 May; 33(4):88-94. PubMed ID: 18524548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residual dipolar couplings and some specific models for motional averaging.
    Deschamps M; Campbell ID; Boyd J
    J Magn Reson; 2005 Jan; 172(1):118-32. PubMed ID: 15589415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative 2D and 3D Gamma-HCP experiments for the determination of the angles alpha and zeta in the phosphodiester backbone of oligonucleotides.
    Nozinovic S; Richter C; Rinnenthal J; Fürtig B; Duchardt-Ferner E; Weigand JE; Schwalbe H
    J Am Chem Soc; 2010 Aug; 132(30):10318-29. PubMed ID: 20614918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and computational characterization of the 17O quadrupole coupling and magnetic shielding tensors for p-nitrobenzaldehyde and formaldehyde.
    Wu G; Mason P; Mo X; Terskikh V
    J Phys Chem A; 2008 Feb; 112(5):1024-32. PubMed ID: 18193848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-43 chemical shift tensors as probes of calcium binding environments. Insight into the structure of the vaterite CaCO3 polymorph by 43Ca solid-state NMR spectroscopy.
    Bryce DL; Bultz EB; Aebi D
    J Am Chem Soc; 2008 Jul; 130(29):9282-92. PubMed ID: 18576634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.