These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 15898813)

  • 21. Single-crystal Bi2S3 nanosheets growing via attachment-recrystallization of nanorods.
    Zhang H; Huang J; Zhou X; Zhong X
    Inorg Chem; 2011 Aug; 50(16):7729-34. PubMed ID: 21774466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fine-tuning the synthesis of ZnO nanostructures by an alcohol thermal process.
    Cheng JP; Zhang XB; Tao XY; Lu HM; Luo ZQ; Liu F
    J Phys Chem B; 2006 Jun; 110(21):10348-53. PubMed ID: 16722738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods.
    Pietrobon B; McEachran M; Kitaev V
    ACS Nano; 2009 Jan; 3(1):21-6. PubMed ID: 19206244
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-temperature growth of ZnO nanorods by chemical bath deposition.
    Yi SH; Choi SK; Jang JM; Kim JA; Jung WG
    J Colloid Interface Sci; 2007 Sep; 313(2):705-10. PubMed ID: 17570384
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth of well-aligned ZnO nanorods using auge catalyst by vapor phase transportation.
    Ha SY; Jung MN; Park SH; Ko HJ; Ko H; Oh DC; Yao T; Chang JH
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3624-7. PubMed ID: 17252824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spray pyrolysis synthesis of ZnS nanoparticles from a single-source precursor.
    Liu S; Zhang H; Swihart MT
    Nanotechnology; 2009 Jun; 20(23):235603. PubMed ID: 19451680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ synthesis of platelet graphite nanofibers from thermal decomposition of poly(ethylene glycol).
    Huang CW; Li YY
    J Phys Chem B; 2006 Nov; 110(46):23242-6. PubMed ID: 17107172
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and evolution of PbS nanocrystals through a surfactant-assisted solvothermal route.
    Zhang C; Kang Z; Shen E; Wang E; Gao L; Luo F; Tian C; Wang C; Lan Y; Li J; Cao X
    J Phys Chem B; 2006 Jan; 110(1):184-9. PubMed ID: 16471519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of WO3 nanorods by reacting WO(OMe)4 under autogenic pressure at elevated temperature followed by annealing.
    Pol SV; Pol VG; Kessler VG; Seisenbaeva GA; Solovyov LA; Gedanken A
    Inorg Chem; 2005 Dec; 44(26):9938-45. PubMed ID: 16363865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spontaneous self-assembly of cerium oxide nanoparticles to nanorods through supraaggregate formation.
    Kuiry SC; Patil SD; Deshpande S; Seal S
    J Phys Chem B; 2005 Apr; 109(15):6936-9. PubMed ID: 16851784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monodisperse CdSe nanorods at low temperatures.
    Nann T; Riegler J
    Chemistry; 2002 Oct; 8(20):4791-5. PubMed ID: 12561119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and optical properties of L-cysteine hydrochloride-stabilized CdSe nanocrystals in a new alkali system.
    Feng B; Teng F; Tang AW; Wang Y; Hou YB; Wang YS
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1178-82. PubMed ID: 18468120
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles.
    Stamplecoskie KG; Scaiano JC
    J Am Chem Soc; 2010 Feb; 132(6):1825-7. PubMed ID: 20102152
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large-scale, surfactant-free, hydrothermal synthesis of lithium aluminate nanorods: optimization of parameters and investigation of growth mechanism.
    Joshi UA; Lee JS
    Inorg Chem; 2007 Apr; 46(8):3176-84. PubMed ID: 17371012
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and characterization of colloidal ternary ZnCdSe semiconductor nanorods.
    Lee H; Holloway PH; Yang H; Hardison L; Kleiman VD
    J Chem Phys; 2006 Oct; 125(16):164711. PubMed ID: 17092124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and optical properties of colloidal tungsten oxide nanorods.
    Lee K; Seo WS; Park JT
    J Am Chem Soc; 2003 Mar; 125(12):3408-9. PubMed ID: 12643684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal decomposition of commercial silicone oil to produce high yield high surface area SiC nanorods.
    Pol VG; Pol SV; Gedanken A; Lim SH; Zhong Z; Lin J
    J Phys Chem B; 2006 Jun; 110(23):11237-40. PubMed ID: 16771390
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Size effects in the oriented-attachment growth process: the case of Cu nanoseeds.
    Shen S; Zhuang J; Xu X; Nisar A; Hu S; Wang X
    Inorg Chem; 2009 Jun; 48(12):5117-28. PubMed ID: 19413306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systematic synthesis and characterization of single-crystal lanthanide phenylphosphonate nanorods.
    Song SY; Ma JF; Yang J; Cao MH; Zhang HJ; Wang HS; Yang KY
    Inorg Chem; 2006 Feb; 45(3):1201-7. PubMed ID: 16441131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-crystalline ZnGa2O4 spinel phosphor via a single-source inorganic precursor route.
    Zou L; Xiang X; Wei M; Li F; Evans DG
    Inorg Chem; 2008 Feb; 47(4):1361-9. PubMed ID: 18193827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.