These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 15899135)
1. Computer construction and analysis of protein models of the mutant gammaD-crystallin gene. Yao K; Sun ZH; Shentu XC; Wang KJ; Tan J Chin Med J (Engl); 2005 May; 118(9):738-41. PubMed ID: 15899135 [TBL] [Abstract][Full Text] [Related]
2. The P23T cataract mutation causes loss of solubility of folded gammaD-crystallin. Evans P; Wyatt K; Wistow GJ; Bateman OA; Wallace BA; Slingsby C J Mol Biol; 2004 Oct; 343(2):435-44. PubMed ID: 15451671 [TBL] [Abstract][Full Text] [Related]
3. GammaD-crystallin associated protein aggregation and lens fiber cell denucleation. Wang K; Cheng C; Li L; Liu H; Huang Q; Xia CH; Yao K; Sun P; Horwitz J; Gong X Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3719-28. PubMed ID: 17652744 [TBL] [Abstract][Full Text] [Related]
4. Autosomal dominant coralliform cataract related to a missense mutation of the gammaD-crystallin gene. Xu WZ; Zheng S; Xu SJ; Huang W; Yao K; Zhang SZ Chin Med J (Engl); 2004 May; 117(5):727-32. PubMed ID: 15161542 [TBL] [Abstract][Full Text] [Related]
5. Special fasciculiform cataract caused by a mutation in the gammaD-crystallin gene. Shentu X; Yao K; Xu W; Zheng S; Hu S; Gong X Mol Vis; 2004 Mar; 10():233-9. PubMed ID: 15064679 [TBL] [Abstract][Full Text] [Related]
6. Visualization of in situ intracellular aggregation of two cataract-associated human gamma-crystallin mutants: lose a tail, lose transparency. Talla V; Srinivasan N; Balasubramanian D Invest Ophthalmol Vis Sci; 2008 Aug; 49(8):3483-90. PubMed ID: 18421082 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of the cataract-causing P23T γD-crystallin mutant. Ji F; Koharudin LM; Jung J; Gronenborn AM Proteins; 2013 Sep; 81(9):1493-8. PubMed ID: 23670788 [TBL] [Abstract][Full Text] [Related]
8. A novel mutation impairing the tertiary structure and stability of γC-crystallin (CRYGC) leads to cataract formation in humans and zebrafish lens. Li XQ; Cai HC; Zhou SY; Yang JH; Xi YB; Gao XB; Zhao WJ; Li P; Zhao GY; Tong Y; Bao FC; Ma Y; Wang S; Yan YB; Lu CL; Ma X Hum Mutat; 2012 Feb; 33(2):391-401. PubMed ID: 22052681 [TBL] [Abstract][Full Text] [Related]
9. Prediction of possible sites for posttranslational modifications in human gamma crystallins: effect of glycation on the structure of human gamma-B-crystallin as analyzed by molecular modeling. Salim A; Bano A; Zaidi ZH Proteins; 2003 Nov; 53(2):162-73. PubMed ID: 14517968 [TBL] [Abstract][Full Text] [Related]
10. A molecular dynamics approach to explore the structural characterization of cataract causing mutation R58H on human γD crystallin. Karunakaran R; Srikumar PS Mol Cell Biochem; 2018 Dec; 449(1-2):55-62. PubMed ID: 29532225 [TBL] [Abstract][Full Text] [Related]
11. Degradation of gamma D- and gamma s-crystallins in human lenses. Srivastava OP; Srivastava K Biochem Biophys Res Commun; 1998 Dec; 253(2):288-94. PubMed ID: 9878530 [TBL] [Abstract][Full Text] [Related]
12. The human W42R γD-crystallin mutant structure provides a link between congenital and age-related cataracts. Ji F; Jung J; Koharudin LM; Gronenborn AM J Biol Chem; 2013 Jan; 288(1):99-109. PubMed ID: 23124202 [TBL] [Abstract][Full Text] [Related]
13. Creation of a new eye lens crystallin (Gambeta) through structure-guided mutagenic grafting of the surface of betaB2 crystallin onto the hydrophobic core of gammaB crystallin. Kapoor D; Singh B; Subramanian K; Guptasarma P FEBS J; 2009 Jun; 276(12):3341-53. PubMed ID: 19438717 [TBL] [Abstract][Full Text] [Related]
14. Decrease in protein solubility and cataract formation caused by the Pro23 to Thr mutation in human gamma D-crystallin. Pande A; Annunziata O; Asherie N; Ogun O; Benedek GB; Pande J Biochemistry; 2005 Feb; 44(7):2491-500. PubMed ID: 15709761 [TBL] [Abstract][Full Text] [Related]
15. Comparative analysis of human γD-crystallin aggregation under physiological and low pH conditions. Wu JW; Chen ME; Wen WS; Chen WA; Li CT; Chang CK; Lo CH; Liu HS; Wang SS PLoS One; 2014; 9(11):e112309. PubMed ID: 25389780 [TBL] [Abstract][Full Text] [Related]
16. Increase in surface hydrophobicity of the cataract-associated P23T mutant of human gammaD-crystallin is responsible for its dramatically lower, retrograde solubility. Pande A; Ghosh KS; Banerjee PR; Pande J Biochemistry; 2010 Jul; 49(29):6122-9. PubMed ID: 20553008 [TBL] [Abstract][Full Text] [Related]
17. Structural and biochemical characterization of the childhood cataract-associated R76S mutant of human γD-crystallin. Ji F; Jung J; Gronenborn AM Biochemistry; 2012 Mar; 51(12):2588-96. PubMed ID: 22394327 [TBL] [Abstract][Full Text] [Related]
18. Biophysical properties of gammaC-crystallin in human and mouse eye lens: the role of molecular dipoles. Purkiss AG; Bateman OA; Wyatt K; Wilmarth PA; David LL; Wistow GJ; Slingsby C J Mol Biol; 2007 Sep; 372(1):205-22. PubMed ID: 17659303 [TBL] [Abstract][Full Text] [Related]
19. V76D mutation in a conserved gD-crystallin region leads to dominant cataracts in mice. Graw J; Löster J; Soewarto D; Fuchs H; Reis A; Wolf E; Balling R; Hrabé de Angelis M Mamm Genome; 2002 Aug; 13(8):452-5. PubMed ID: 12226711 [TBL] [Abstract][Full Text] [Related]
20. Association of partially folded lens betaB2-crystallins with the alpha-crystallin molecular chaperone. Evans P; Slingsby C; Wallace BA Biochem J; 2008 Feb; 409(3):691-9. PubMed ID: 17937660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]