BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 15899260)

  • 21. Temporally restricted substrate interactions direct fate and specification of neural precursors derived from embryonic stem cells.
    Goetz AK; Scheffler B; Chen HX; Wang S; Suslov O; Xiang H; Brüstle O; Roper SN; Steindler DA
    Proc Natl Acad Sci U S A; 2006 Jul; 103(29):11063-8. PubMed ID: 16832065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vivo cell fate reprogramming for spinal cord repair.
    Tai W; Zhang CL
    Curr Opin Genet Dev; 2023 Oct; 82():102090. PubMed ID: 37506560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From classical to current: analyzing peripheral nervous system and spinal cord lineage and fate.
    Butler SJ; Bronner ME
    Dev Biol; 2015 Feb; 398(2):135-46. PubMed ID: 25446276
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional Multipotency of Stem Cells and Recovery Neurobiology of Injured Spinal Cords.
    Teng YD
    Cell Transplant; 2019 Apr; 28(4):451-459. PubMed ID: 31134830
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of nuclear volume as an indicator of maturation of glial precursor cells in the developing rat spinal cord: a stereological approach.
    McMahon SS; Dockery P; McDermott KW
    J Anat; 2003 Sep; 203(3):339-44. PubMed ID: 14529051
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An ependymal cell census identifies heterogeneous and ongoing cell maturation in the adult mouse spinal cord that changes dynamically on injury.
    Rodrigo Albors A; Singer GA; Llorens-Bobadilla E; Frisén J; May AP; Ponting CP; Storey KG
    Dev Cell; 2023 Feb; 58(3):239-255.e10. PubMed ID: 36706756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-cell analysis reveals dynamic changes of neural cells in developing human spinal cord.
    Zhang Q; Wu X; Fan Y; Jiang P; Zhao Y; Yang Y; Han S; Xu B; Chen B; Han J; Sun M; Zhao G; Xiao Z; Hu Y; Dai J
    EMBO Rep; 2021 Nov; 22(11):e52728. PubMed ID: 34605607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glial-restricted progenitor cells: a cure for diseased brain?
    Rogujski P; Lukomska B; Janowski M; Stanaszek L
    Biol Res; 2024 Mar; 57(1):8. PubMed ID: 38475854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Migration and fate of therapeutic stem cells in different brain disease models.
    Carney BJ; Shah K
    Neuroscience; 2011 Dec; 197():37-47. PubMed ID: 21946010
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glial restricted precursor delivery of dendrimer N-acetylcysteine promotes migration and differentiation following transplant in mouse white matter injury model.
    Nemeth CL; Tomlinson SN; Sharma R; Sharma A; Kannan S; Kannan RM; Fatemi A
    Nanoscale; 2020 Aug; 12(30):16063-16068. PubMed ID: 32724988
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transplantation of Human Cortically-Specified Neuroepithelial Progenitor Cells Leads to Improved Functional Outcomes in a Mouse Model of Stroke.
    Islam R; Drecun S; Varga BV; Vonderwalde I; Siu R; Nagy A; Morshead CM
    Front Cell Neurosci; 2021; 15():654290. PubMed ID: 33994947
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Emerging Role of Biological Sex in Cell Therapy for Spinal Cord Injury.
    Tucker A; Dulin JN
    Neurosci Insights; 2023; 18():26331055231153128. PubMed ID: 36798608
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stem cell therapies for acute spinal cord injury in humans: a review.
    Jin MC; Medress ZA; Azad TD; Doulames VM; Veeravagu A
    Neurosurg Focus; 2019 Mar; 46(3):E10. PubMed ID: 30835679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitor Cells: Preclinical Efficacy and Safety in Cervical Spinal Cord Injury.
    Manley NC; Priest CA; Denham J; Wirth ED; Lebkowski JS
    Stem Cells Transl Med; 2017 Oct; 6(10):1917-1929. PubMed ID: 28834391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transplanted Human Stem Cell-Derived Interneuron Precursors Mitigate Mouse Bladder Dysfunction and Central Neuropathic Pain after Spinal Cord Injury.
    Fandel TM; Trivedi A; Nicholas CR; Zhang H; Chen J; Martinez AF; Noble-Haeusslein LJ; Kriegstein AR
    Cell Stem Cell; 2016 Oct; 19(4):544-557. PubMed ID: 27666009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Complete rat spinal cord transection as a faithful model of spinal cord injury for translational cell transplantation.
    Lukovic D; Moreno-Manzano V; Lopez-Mocholi E; Rodriguez-Jiménez FJ; Jendelova P; Sykova E; Oria M; Stojkovic M; Erceg S
    Sci Rep; 2015 Apr; 5():9640. PubMed ID: 25860664
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of axonal regeneration after mammalian spinal cord injury.
    Zheng B; Tuszynski MH
    Nat Rev Mol Cell Biol; 2023 Jun; 24(6):396-413. PubMed ID: 36604586
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural Stem Cell Grafts Form Extensive Synaptic Networks that Integrate with Host Circuits after Spinal Cord Injury.
    Ceto S; Sekiguchi KJ; Takashima Y; Nimmerjahn A; Tuszynski MH
    Cell Stem Cell; 2020 Sep; 27(3):430-440.e5. PubMed ID: 32758426
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transplanting neural progenitor cells to restore connectivity after spinal cord injury.
    Fischer I; Dulin JN; Lane MA
    Nat Rev Neurosci; 2020 Jul; 21(7):366-383. PubMed ID: 32518349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reactivation of Dormant Relay Pathways in Injured Spinal Cord by KCC2 Manipulations.
    Chen B; Li Y; Yu B; Zhang Z; Brommer B; Williams PR; Liu Y; Hegarty SV; Zhou S; Zhu J; Guo H; Lu Y; Zhang Y; Gu X; He Z
    Cell; 2018 Jul; 174(3):521-535.e13. PubMed ID: 30033363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.