These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 15899305)

  • 1. Sleep spindle detection using artificial neural networks trained with filtered time-domain EEG: a feasibility study.
    Ventouras EM; Monoyiou EA; Ktonas PY; Paparrigopoulos T; Dikeos DG; Uzunoglu NK; Soldatos CR
    Comput Methods Programs Biomed; 2005 Jun; 78(3):191-207. PubMed ID: 15899305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autoassociative MLP in sleep spindle detection.
    Huupponen E; Värri A; Himanen SL; Hasan J; Lehtokangas M; Saarinen J
    J Med Syst; 2000 Jun; 24(3):183-93. PubMed ID: 10984872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epileptic EEG detection using neural networks and post-classification.
    Patnaik LM; Manyam OK
    Comput Methods Programs Biomed; 2008 Aug; 91(2):100-9. PubMed ID: 18406490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The hypnospectrogram: an EEG power spectrum based means to concurrently overview the macroscopic and microscopic architecture of human sleep.
    Kokkinos V; Koupparis A; Stavrinou ML; Kostopoulos GK
    J Neurosci Methods; 2009 Dec; 185(1):29-38. PubMed ID: 19747945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying chirp in sleep spindles.
    Schönwald SV; Carvalho DZ; Dellagustin G; de Santa-Helena EL; Gerhardt GJ
    J Neurosci Methods; 2011 Apr; 197(1):158-64. PubMed ID: 21291911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A reliable probabilistic sleep stager based on a single EEG signal.
    Flexer A; Gruber G; Dorffner G
    Artif Intell Med; 2005 Mar; 33(3):199-207. PubMed ID: 15811785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance evaluation of an Artificial Neural Network automatic spindle detection system.
    Ventouras EM; Economou NT; Kritikou I; Tsekou H; Paparrigopoulos TJ; Ktonas PY
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4328-31. PubMed ID: 23366885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistics over features: EEG signals analysis.
    Derya Ubeyli E
    Comput Biol Med; 2009 Aug; 39(8):733-41. PubMed ID: 19555931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of flow limitation in obstructive sleep apnea with an artificial neural network.
    Norman RG; Rapoport DM; Ayappa I
    Physiol Meas; 2007 Sep; 28(9):1089-100. PubMed ID: 17827656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Auto sleep staging and sleep quality estimation based on BP neural network].
    Liu J; Zheng C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Dec; 22(6):1124-7. PubMed ID: 16422081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the use of EEG features towards person identification via neural networks.
    Poulos M; Rangoussi M; Alexandris N; Evangelou A
    Med Inform Internet Med; 2001; 26(1):35-48. PubMed ID: 11583407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multistage knowledge-based system for EEG seizure detection in newborn infants.
    Aarabi A; Grebe R; Wallois F
    Clin Neurophysiol; 2007 Dec; 118(12):2781-97. PubMed ID: 17905654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An approach to estimate EEG power spectrum as an index of heat stress using backpropagation artificial neural network.
    Sinha RK
    Med Eng Phys; 2007 Jan; 29(1):120-4. PubMed ID: 16513406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and comparison of four sleep spindle detection methods.
    Huupponen E; Gómez-Herrero G; Saastamoinen A; Värri A; Hasan J; Himanen SL
    Artif Intell Med; 2007 Jul; 40(3):157-70. PubMed ID: 17555950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The automatic recognition of REM sleep: a challenge and some answers.
    Grözinger M; Röschke J
    Methods Find Exp Clin Pharmacol; 2002; 24 Suppl D():33-5. PubMed ID: 12575466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated sleep-spindle detection in healthy children polysomnograms.
    Causa L; Held CM; Causa J; Estévez PA; Perez CA; Chamorro R; Garrido M; Algarín C; Peirano P
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2135-46. PubMed ID: 20550978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An automated cervical pre-cancerous diagnostic system.
    Mat-Isa NA; Mashor MY; Othman NH
    Artif Intell Med; 2008 Jan; 42(1):1-11. PubMed ID: 17996432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of electroencephalographic arousals in multichannel sleep recordings.
    Alvarez-Estévez D; Moret-Bonillo V
    IEEE Trans Biomed Eng; 2011 Jan; 58(1):54-63. PubMed ID: 20840892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of algorithms for detection of spikes in the electroencephalogram.
    Pang CC; Upton AR; Shine G; Kamath MV
    IEEE Trans Biomed Eng; 2003 Apr; 50(4):521-6. PubMed ID: 12723065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multivariate analysis of full-term neonatal polysomnographic data.
    Gerla V; Paul K; Lhotska L; Krajca V
    IEEE Trans Inf Technol Biomed; 2009 Jan; 13(1):104-10. PubMed ID: 19129029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.