BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15899697)

  • 21. Modified microperoxidases exhibit different reactivity towards phenolic substrates.
    Dallacosta C; Casella L; Monzani E
    Chembiochem; 2004 Dec; 5(12):1692-9. PubMed ID: 15532028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic studies on the oxidation of phenols by the horseradish peroxidase compound II.
    Patel PK; Mondal MS; Modi S; Behere DV
    Biochim Biophys Acta; 1997 Apr; 1339(1):79-87. PubMed ID: 9165102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electron transfer reaction of oxo(salen)chromium(V) ion with anilines.
    Premsingh S; Venkataramanan NS; Rajagopal S; Mirza SP; Vairamani M; Rao PS; Velavan K
    Inorg Chem; 2004 Sep; 43(18):5744-53. PubMed ID: 15332827
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rates of reaction of indoleacetic acids with horseradish peroxidase compound I and their dependence on the redox potentials.
    Candeias LP; Folkes LK; Porssa M; Parrick J; Wardman P
    Biochemistry; 1996 Jan; 35(1):102-8. PubMed ID: 8555162
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects.
    Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD
    Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential substrate behaviour of phenol and aniline derivatives during conversion by horseradish peroxidase.
    Van Haandel MJ; Claassens MM; Van der Hout N; Boersma MG; Vervoort J; Rietjens IM
    Biochim Biophys Acta; 1999 Nov; 1435(1-2):22-9. PubMed ID: 10561534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of Marcus theory of electron transfer for the reactions between HRP compound I and II and 2,4-disubstituted phenols.
    Khopde SM; Priyadarsini KI
    Biophys Chem; 2000 Dec; 88(1-3):103-9. PubMed ID: 11152266
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition.
    Xu F
    Biochemistry; 1996 Jun; 35(23):7608-14. PubMed ID: 8652543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Binuclear Robson type Ni(ii) complex as a reactant supplementing our knowledge of the orientation effects in electrochemical kinetics.
    Krivenko AG; Kotkin AS; Simbirtseva GV; Nazmutdinov RR; Glukhov DV; Roznyatovskaya NV; Tsirlina GA
    Phys Chem Chem Phys; 2008 May; 10(17):2390-8. PubMed ID: 18414730
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calculation of the relative acidities and oxidation potentials of para-substituted phenols. A model for alpha-tocopherol in solution.
    Singh NK; Shaik MS; O'Malley PJ; Popelier PL
    Org Biomol Chem; 2007 Jun; 5(11):1739-43. PubMed ID: 17520142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An efficient proton-coupled electron-transfer process during oxidation of ferulic acid by horseradish peroxidase: coming full cycle.
    Derat E; Shaik S
    J Am Chem Soc; 2006 Oct; 128(42):13940-9. PubMed ID: 17044722
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antioxidant properties of phenols.
    Foti MC
    J Pharm Pharmacol; 2007 Dec; 59(12):1673-85. PubMed ID: 18053330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stereospecificity of horseradish peroxidase.
    Gilabert MA; Fenoll LG; García-Molina F; García-Ruiz PA; Tudela J; García-Cánovas F; Rodríguez-López JN
    Biol Chem; 2004 Dec; 385(12):1177-84. PubMed ID: 15653431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heme electron transfer in peroxidases: the propionate e-pathway.
    Guallar V
    J Phys Chem B; 2008 Oct; 112(42):13460-4. PubMed ID: 18816089
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proton-coupled electron-transfer oxidation of phenols by hexachloroiridate(IV).
    Song N; Stanbury DM
    Inorg Chem; 2008 Dec; 47(24):11458-60. PubMed ID: 19006385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hammett rho sigma correlation for reactions of horseradish peroxidase compound II with phenols.
    Dunford HB; Adeniran AJ
    Arch Biochem Biophys; 1986 Dec; 251(2):536-42. PubMed ID: 3800384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phenolic antioxidants inhibit the triplet-induced transformation of anilines and sulfonamide antibiotics in aqueous solution.
    Wenk J; Canonica S
    Environ Sci Technol; 2012 May; 46(10):5455-62. PubMed ID: 22510041
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calculation of vibronic couplings for phenoxyl/phenol and benzyl/toluene self-exchange reactions: implications for proton-coupled electron transfer mechanisms.
    Skone JH; Soudackov AV; Hammes-Schiffer S
    J Am Chem Soc; 2006 Dec; 128(51):16655-63. PubMed ID: 17177415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical modification of turnip peroxidase with methoxypolyethylene glycol enhances activity and stability for phenol removal using the immobilized enzyme.
    Quintanilla-Guerrero F; Duarte-Vázquez MA; Tinoco R; Gómez-Suárez M; García-Almendárez BE; Vazquez-Duhalt R; Regalado C
    J Agric Food Chem; 2008 Sep; 56(17):8058-65. PubMed ID: 18698787
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A combination of ultrasound and oxidative enzyme: sono-biodegradation of substituted phenols.
    Entezari MH; Pétrier C
    Ultrason Sonochem; 2003 Jul; 10(4-5):241-6. PubMed ID: 12818389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.