These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 15900334)
1. Direct electrochemistry and electrocatalysis with hemoglobin in water-soluble quantum dots film on glassy carbon electrode. Lu Q; Hu S; Pang D; He Z Chem Commun (Camb); 2005 May; (20):2584-5. PubMed ID: 15900334 [TBL] [Abstract][Full Text] [Related]
2. Direct electron transfer and electrocatalysis of hemoglobin adsorbed on mesoporous carbon through layer-by-layer assembly. Feng JJ; Xu JJ; Chen HY Biosens Bioelectron; 2007 Mar; 22(8):1618-24. PubMed ID: 16919440 [TBL] [Abstract][Full Text] [Related]
3. Hemoglobin/colloidal silver nanoparticles immobilized in titania sol-gel film on glassy carbon electrode: direct electrochemistry and electrocatalysis. Zhao S; Zhang K; Sun Y; Sun C Bioelectrochemistry; 2006 Sep; 69(1):10-5. PubMed ID: 16305828 [TBL] [Abstract][Full Text] [Related]
4. Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin. Zhang L; Jiang X; Wang E; Dong S Biosens Bioelectron; 2005 Aug; 21(2):337-45. PubMed ID: 16023961 [TBL] [Abstract][Full Text] [Related]
5. Direct electrochemistry and electrocatalysis of hemoglobin on undoped nanocrystalline diamond modified glassy carbon electrode. Zhu JT; Shi CG; Xu JJ; Chen HY Bioelectrochemistry; 2007 Nov; 71(2):243-8. PubMed ID: 17702670 [TBL] [Abstract][Full Text] [Related]
6. Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film. Xu H; Dai H; Chen G Talanta; 2010 Apr; 81(1-2):334-8. PubMed ID: 20188928 [TBL] [Abstract][Full Text] [Related]
7. Accelerated direct electrochemistry of hemoglobin based on hemoglobin-carbon nanotube (Hb-CNT) assembly. Zhang R; Wang X; Shiu KK J Colloid Interface Sci; 2007 Dec; 316(2):517-22. PubMed ID: 17904150 [TBL] [Abstract][Full Text] [Related]
8. Direct electron transfer and bioelectrocatalysis of hemoglobin on nano-structural attapulgite clay-modified glassy carbon electrode. Xu J; Li W; Yin Q; Zhong H; Zhu Y; Jin L J Colloid Interface Sci; 2007 Nov; 315(1):170-6. PubMed ID: 17681509 [TBL] [Abstract][Full Text] [Related]
9. Electrochemistry and electrocatalysis of hemoglobin in Nafion/nano-CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode. Sun W; Gao R; Jiao K J Phys Chem B; 2007 May; 111(17):4560-7. PubMed ID: 17425353 [TBL] [Abstract][Full Text] [Related]
10. Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles: direct voltammetry and electrocatalytic activity. Salimi A; Hallaj R; Soltanian S Biophys Chem; 2007 Nov; 130(3):122-31. PubMed ID: 17825977 [TBL] [Abstract][Full Text] [Related]
11. Direct electrochemistry and electrocatalysis of hemoglobin entrapped in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan. Zeng X; Wei W; Li X; Zeng J; Wu L Bioelectrochemistry; 2007 Nov; 71(2):135-41. PubMed ID: 17398166 [TBL] [Abstract][Full Text] [Related]
12. Studies on direct electron transfer and biocatalytic properties of heme proteins in lecithin film. Lu Q; Chen X; Wu Y; Hu S Biophys Chem; 2005 Aug; 117(1):55-63. PubMed ID: 15907360 [TBL] [Abstract][Full Text] [Related]
13. Hemoglobin on phosphonic acid terminated self-assembled monolayers at a gold electrode: immobilization, direct electrochemistry, and electrocatalysis. Chen Y; Jin B; Guo LR; Yang XJ; Chen W; Gu G; Zheng LM; Xia XH Chemistry; 2008; 14(34):10727-34. PubMed ID: 18942683 [TBL] [Abstract][Full Text] [Related]
14. Direct electrochemistry of hemoglobin entrapped in cyanoethyl cellulose film and its electrocatalysis to nitric oxide. Jia S; Fei J; Zhou J; Chen X; Meng J Biosens Bioelectron; 2009 Jun; 24(10):3049-54. PubMed ID: 19375300 [TBL] [Abstract][Full Text] [Related]
15. Composite system based on chitosan and room-temperature ionic liquid: direct electrochemistry and electrocatalysis of hemoglobin. Lu X; Hu J; Yao X; Wang Z; Li J Biomacromolecules; 2006 Mar; 7(3):975-80. PubMed ID: 16529439 [TBL] [Abstract][Full Text] [Related]
16. Direct electron transfer of hemoglobin and myoglobin at the bare glassy carbon electrode in an aqueous BMI.BF4 ionic-liquid mixture. Loget G; Chevance S; Poriel C; Simonneaux G; Lagrost C; Rault-Berthelot J Chemphyschem; 2011 Feb; 12(2):411-8. PubMed ID: 21271634 [TBL] [Abstract][Full Text] [Related]
17. Electrochemistry of hemoglobin entrapped in a Nafion/nano-ZnO film on carbon ionic liquid electrode. Sun W; Zhai Z; Wang D; Liu S; Jiao K Bioelectrochemistry; 2009 Feb; 74(2):295-300. PubMed ID: 19059815 [TBL] [Abstract][Full Text] [Related]
18. Direct electrochemistry and electrocatalytic activity of hemoglobin at CdTe nanoparticle/nafion film-modified electrode. Wang Z; Xu Q; Wang HQ; Yin ZH; Yu JH; Zhao YD Anal Sci; 2009 Jun; 25(6):773-7. PubMed ID: 19531886 [TBL] [Abstract][Full Text] [Related]
19. A nanocarbon film electrode as a platform for exploring DNA methylation. Kato D; Sekioka N; Ueda A; Kurita R; Hirono S; Suzuki K; Niwa O J Am Chem Soc; 2008 Mar; 130(12):3716-7. PubMed ID: 18314986 [TBL] [Abstract][Full Text] [Related]
20. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Liu Q; Lu X; Li J; Yao X; Li J Biosens Bioelectron; 2007 Jun; 22(12):3203-9. PubMed ID: 17416515 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]