BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 15900397)

  • 21. An analysis of regional microvascular loss and recovery following two grades of fluid percussion trauma: a role for hypoxia-inducible factors in traumatic brain injury.
    Park E; Bell JD; Siddiq IP; Baker AJ
    J Cereb Blood Flow Metab; 2009 Mar; 29(3):575-84. PubMed ID: 19088740
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluid percussion injury device for the precise control of injury parameters.
    Wahab RA; Neuberger EJ; Lyeth BG; Santhakumar V; Pfister BJ
    J Neurosci Methods; 2015 Jun; 248():16-26. PubMed ID: 25800515
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lateral fluid percussion injury in the developing rat causes an acute, mild behavioral dysfunction in the absence of significant cell death.
    Gurkoff GG; Giza CC; Hovda DA
    Brain Res; 2006 Mar; 1077(1):24-36. PubMed ID: 16490184
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of resuscitation fluid on neurologic physiology after cerebral trauma and hemorrhage.
    Baker AJ; Park E; Hare GM; Liu E; Sikich N; Mazer DC
    J Trauma; 2008 Feb; 64(2):348-57. PubMed ID: 18301197
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal changes in intracranial pressure in a modified experimental model of closed head injury.
    Engelborghs K; Verlooy J; Van Reempts J; Van Deuren B; Van de Ven M; Borgers M
    J Neurosurg; 1998 Nov; 89(5):796-806. PubMed ID: 9817418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity.
    Jaeger M; Schuhmann MU; Soehle M; Meixensberger J
    Crit Care Med; 2006 Jun; 34(6):1783-8. PubMed ID: 16625135
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cerebral transplantation of encapsulated mesenchymal stem cells improves cellular pathology after experimental traumatic brain injury.
    Heile AM; Wallrapp C; Klinge PM; Samii A; Kassem M; Silverberg G; Brinker T
    Neurosci Lett; 2009 Oct; 463(3):176-81. PubMed ID: 19638295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative T2 mapping as a potential marker for the initial assessment of the severity of damage after traumatic brain injury in rat.
    Kharatishvili I; Sierra A; Immonen RJ; Gröhn OH; Pitkänen A
    Exp Neurol; 2009 May; 217(1):154-64. PubMed ID: 19416663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluid percussion injury transiently increases then decreases brain oxygen consumption in the rat.
    Levasseur JE; Alessandri B; Reinert M; Bullock R; Kontos HA
    J Neurotrauma; 2000 Jan; 17(1):101-12. PubMed ID: 10674762
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of mechanical chest percussion on intracranial pressure: a pilot study.
    Olson DM; Thoyre SM; Bennett SN; Stoner JB; Graffagnino C
    Am J Crit Care; 2009 Jul; 18(4):330-5. PubMed ID: 19304565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The fate of glucose during the period of decreased metabolism after fluid percussion injury: a 13C NMR study.
    Bartnik BL; Lee SM; Hovda DA; Sutton RL
    J Neurotrauma; 2007 Jul; 24(7):1079-92. PubMed ID: 17610349
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlled cortical impact injury affects dopaminergic transmission in the rat striatum.
    Wagner AK; Sokoloski JE; Ren D; Chen X; Khan AS; Zafonte RD; Michael AC; Dixon CE
    J Neurochem; 2005 Oct; 95(2):457-65. PubMed ID: 16190869
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous cerebral compliance monitoring in severe head injury: its relationship with intracranial pressure and cerebral perfusion pressure.
    Portella G; Cormio M; Citerio G; Contant C; Kiening K; Enblad P; Piper I
    Acta Neurochir (Wien); 2005 Jul; 147(7):707-13; discussion 713. PubMed ID: 15900402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlled cortical impact in swine: pathophysiology and biomechanics.
    Manley GT; Rosenthal G; Lam M; Morabito D; Yan D; Derugin N; Bollen A; Knudson MM; Panter SS
    J Neurotrauma; 2006 Feb; 23(2):128-39. PubMed ID: 16503797
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased cerebral uptake and oxidation of exogenous betaHB improves ATP following traumatic brain injury in adult rats.
    Prins ML; Lee SM; Fujima LS; Hovda DA
    J Neurochem; 2004 Aug; 90(3):666-72. PubMed ID: 15255945
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of cocaine in an experimental model of traumatic brain injury.
    McBeth BD; Stern SA; Wang X; Mertz M; Zink BJ
    Acad Emerg Med; 2005 Jun; 12(6):483-90. PubMed ID: 15930397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regional patterns of blood-brain barrier breakdown following central and lateral fluid percussion injury in rodents.
    Schmidt RH; Grady MS
    J Neurotrauma; 1993; 10(4):415-30. PubMed ID: 8145265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perfluorocarbon emulsions improve cognitive recovery after lateral fluid percussion brain injury in rats.
    Zhou Z; Sun D; Levasseur JE; Merenda A; Hamm RJ; Zhu J; Spiess BD; Bullock MR
    Neurosurgery; 2008 Oct; 63(4):799-806; discussion 806-7. PubMed ID: 18981892
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of brain cooling on brain ischemia and damage markers after fluid percussion brain injury in rats.
    Chio CC; Kuo JR; Hsiao SH; Chang CP; Lin MT
    Shock; 2007 Sep; 28(3):284-90. PubMed ID: 17529907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Administration of vaccinia virus complement control protein shows significant cognitive improvement in a mild injury model.
    Pillay NS; Kellaway LA; Kotwal GJ
    Ann N Y Acad Sci; 2005 Nov; 1056():450-61. PubMed ID: 16387708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.