These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 1590046)

  • 1. Intermittent micromotion inhibits bone ingrowth. Titanium implants in rabbits.
    Aspenberg P; Goodman S; Toksvig-Larsen S; Ryd L; Albrektsson T
    Acta Orthop Scand; 1992 Apr; 63(2):141-5. PubMed ID: 1590046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of amplitude of micromotion on bone ingrowth into titanium chambers implanted in the rabbit tibia.
    Goodman S; Aspenberg P
    Biomaterials; 1992; 13(13):944-8. PubMed ID: 1477264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Difference in bone ingrowth after one versus two daily episodes of micromotion: experiments with titanium chambers in rabbits.
    Goodman S; Wang JS; Doshi A; Aspenberg P
    J Biomed Mater Res; 1993 Nov; 27(11):1419-24. PubMed ID: 8263004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ingrowth of bone into pores in titanium chambers implanted in rabbits: effect of pore cross-sectional shape in the presence of dynamic shear.
    Goodman S; Toksvig-Larsen S; Aspenberg P
    J Biomed Mater Res; 1993 Feb; 27(2):247-53. PubMed ID: 8436582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermittent micromotion and polyethylene particles inhibit bone ingrowth into titanium chambers in rabbits.
    Goodman S; Aspenberg P; Song Y; Regula D; Lidgren L
    J Appl Biomater; 1995; 6(3):161-5. PubMed ID: 7492805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of micromotion and particulate materials on tissue differentiation. Bone chamber studies in rabbits.
    Goodman SB
    Acta Orthop Scand Suppl; 1994 Jun; 258():1-43. PubMed ID: 8042498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of callus deformation time. Bone chamber study in rabbits.
    Aspenberg P; Goodman SB; Wang JS
    Clin Orthop Relat Res; 1996 Jan; (322):253-61. PubMed ID: 8542702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cessation of strain facilitates bone formation in the micromotion chamber implanted in the rabbit tibia.
    Goodman SB; Song Y; Doshi A; Aspenberg P
    Biomaterials; 1994 Sep; 15(11):889-93. PubMed ID: 7833435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of disodium (1-hydroxythylidene) diphosphonate on bone ingrowth into porous, titanium fiber-mesh implants.
    Kitsugi T; Yamamuro T; Nakamura T; Oka M
    J Arthroplasty; 1995 Apr; 10(2):245-53. PubMed ID: 7798108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of calcium phosphate surface coating on bone ingrowth onto porous-surfaced titanium alloy implants in rabbit tibiae.
    Yang C
    J Oral Maxillofac Surg; 2002 Apr; 60(4):422-5; discussion 426. PubMed ID: 11928101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of sol-gel-formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants.
    Nguyen HQ; Deporter DA; Pilliar RM; Valiquette N; Yakubovich R
    Biomaterials; 2004 Feb; 25(5):865-76. PubMed ID: 14609675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of surface-blasting on the incorporation of titanium-alloy implants in a rabbit intramedullary model.
    Feighan JE; Goldberg VM; Davy D; Parr JA; Stevenson S
    J Bone Joint Surg Am; 1995 Sep; 77(9):1380-95. PubMed ID: 7673290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of nitinol implant porosity on cranial bone ingrowth and apposition after 6 weeks.
    Ayers RA; Simske SJ; Bateman TA; Petkus A; Sachdeva RL; Gyunter VE
    J Biomed Mater Res; 1999 Apr; 45(1):42-7. PubMed ID: 10397956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A light and scanning electron microscopic evaluation of electro-discharge-compacted porous titanium implants in rabbit tibia.
    Drummond JF; Dominici JT; Sammon PJ; Okazaki K; Geissler R; Lifland MI; Anderson SA; Renshaw W
    J Oral Implantol; 1995; 21(4):295-303. PubMed ID: 8699522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PTH [1-34] enhances bone response around titanium implants in a rabbit model of osteoporosis.
    Almagro MI; Roman-Blas JA; Bellido M; Castañeda S; Cortez R; Herrero-Beaumont G
    Clin Oral Implants Res; 2013 Sep; 24(9):1027-34. PubMed ID: 22626278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cancellous bone osseointegration is enhanced by in vivo loading.
    Willie BM; Yang X; Kelly NH; Han J; Nair T; Wright TM; van der Meulen MC; Bostrom MP
    Tissue Eng Part C Methods; 2010 Dec; 16(6):1399-406. PubMed ID: 20367497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Healing response of cortical and cancellous bone around titanium implants.
    Lee JE; Heo SJ; Koak JY; Kim SK; Han CH; Lee SJ
    Int J Oral Maxillofac Implants; 2009; 24(4):655-62. PubMed ID: 19885405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osseous penetration rate into implants pretreated with bone cement.
    Albrektsson T
    Arch Orthop Trauma Surg (1978); 1984; 102(3):141-7. PubMed ID: 6703869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyapatite coating modifies implant membrane formation. Controlled micromotion studied in dogs.
    Søballe K; Brockstedt-Rasmussen H; Hansen ES; Bünger C
    Acta Orthop Scand; 1992 Apr; 63(2):128-40. PubMed ID: 1590045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The repeated sampling bone chamber: a new permanent titanium implant to study bone grafts in the goat.
    Lamerigts N; Aspenberg P; Buma P; Versleyen D; Slooff TJ
    Lab Anim Sci; 1997 Aug; 47(4):401-6. PubMed ID: 9306314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.