These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 15900608)

  • 21. Differentiation of induced pluripotent stem cells toward neurons in hydrogel biomaterials.
    Kuo YC; Chang YH
    Colloids Surf B Biointerfaces; 2013 Feb; 102():405-11. PubMed ID: 23010124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stabilization of polyion complex nanoparticles composed of poly(amino acid) using hydrophobic interactions.
    Akagi T; Watanabe K; Kim H; Akashi M
    Langmuir; 2010 Feb; 26(4):2406-13. PubMed ID: 20017513
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel functional biodegradable polymer: synthesis and anticoagulant activity of poly(gamma-glutamic acid)sulfonate (gamma-PGA-sulfonate).
    Matsusaki M; Serizawa T; Kishida A; Endo T; Akashi M
    Bioconjug Chem; 2002; 13(1):23-8. PubMed ID: 11792175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The properties of gelatin-poly (gamma-glutamic acid) hydrogels as biological glues.
    Hsu SH; Lin CH
    Biorheology; 2007; 44(1):17-28. PubMed ID: 17502686
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cross-linked poly (gamma-glutamic acid) attenuates peritoneal adhesion in a rat model.
    Izumi Y; Yamamoto M; Kawamura M; Adachi T; Kobayashi K
    Surgery; 2007 May; 141(5):678-81. PubMed ID: 17462469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The construction of 3D-engineered tissues composed of cells and extracellular matrices by hydrogel template approach.
    Matsusaki M; Yoshida H; Akashi M
    Biomaterials; 2007 Jun; 28(17):2729-37. PubMed ID: 17336376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Material properties and cell compatibility of poly(γ-glutamic acid)-keratin hydrogels.
    Bajestani MI; Kader S; Monavarian M; Mousavi SM; Jabbari E; Jafari A
    Int J Biol Macromol; 2020 Jan; 142():790-802. PubMed ID: 31622720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ternary complexes of pDNA, polyethylenimine, and gamma-polyglutamic acid for gene delivery systems.
    Kurosaki T; Kitahara T; Fumoto S; Nishida K; Nakamura J; Niidome T; Kodama Y; Nakagawa H; To H; Sasaki H
    Biomaterials; 2009 May; 30(14):2846-53. PubMed ID: 19232715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro enzymatic degradation of nanoparticles prepared from hydrophobically-modified poly(gamma-glutamic acid).
    Akagi T; Higashi M; Kaneko T; Kida T; Akashi M
    Macromol Biosci; 2005 Jul; 5(7):598-602. PubMed ID: 15991216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of poly(γ-glutamic acid)/hydroxyapatite monolith via biomineralization for bone tissue engineering.
    Park SB; Hasegawa U; van der Vlies AJ; Sung MH; Uyama H
    J Biomater Sci Polym Ed; 2014; 25(17):1875-90. PubMed ID: 25178909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A novel poly(γ-glutamic acid)/silk-sericin hydrogel for wound dressing: Synthesis, characterization and biological evaluation.
    Shi L; Yang N; Zhang H; Chen L; Tao L; Wei Y; Liu H; Luo Y
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():533-40. PubMed ID: 25579954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thiolated γ-polyglutamic acid as a bioadhesive hydrogel-forming material: evaluation of gelation, bioadhesive properties and sustained release of KGF in the repair of injured corneas.
    Xu HL; Tong MQ; Wang LF; Chen R; Li XZ; Sohawon Y; Yao Q; Xiao J; Zhao YZ
    Biomater Sci; 2019 May; 7(6):2582-2599. PubMed ID: 30977482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoparticles formed by complexation of poly-gamma-glutamic acid with lead ions.
    Bodnár M; Kjøniksen AL; Molnár RM; Hartmann JF; Daróczi L; Nyström B; Borbély J
    J Hazard Mater; 2008 May; 153(3):1185-92. PubMed ID: 17997032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TATVHL peptide-grafted alginate/poly(γ-glutamic acid) scaffolds with inverted colloidal crystal topology for neuronal differentiation of iPS cells.
    Kuo YC; Chung CY
    Biomaterials; 2012 Dec; 33(35):8955-66. PubMed ID: 22998813
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bio-based hydrogels prepared by cross-linking of microbial poly(gamma-glutamic acid) with various saccharides.
    Murakami S; Aoki N
    Biomacromolecules; 2006 Jul; 7(7):2122-7. PubMed ID: 16827578
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A heavy metal biotrap for wastewater remediation using poly-gamma-glutamic acid.
    Mark SS; Crusberg TC; Dacunha CM; Di Iorio AA
    Biotechnol Prog; 2006; 22(2):523-31. PubMed ID: 16599572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Natural and edible biopolymer poly-gamma-glutamic acid: synthesis, production, and applications.
    Sung MH; Park C; Kim CJ; Poo H; Soda K; Ashiuchi M
    Chem Rec; 2005; 5(6):352-66. PubMed ID: 16278834
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Layer-by-layer buildup of poly(L-glutamic acid)/chitosan film for biologically active coating.
    Song Z; Yin J; Luo K; Zheng Y; Yang Y; Li Q; Yan S; Chen X
    Macromol Biosci; 2009 Mar; 9(3):268-78. PubMed ID: 18855946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Injectable system and its potential application for the delivery of biomolecules by using thermosensitive poly(γ-glutamic acid)-based physical hydrogel.
    Kim W; Kim M; Tae G
    Int J Biol Macromol; 2018 Apr; 110():457-464. PubMed ID: 28970167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel poly(HEMA-co-METAC)/alginate semi-interpenetrating hydrogels for biomedical applications: synthesis and characterization.
    La Gatta A; Schiraldi C; Esposito A; D'Agostino A; De Rosa A
    J Biomed Mater Res A; 2009 Jul; 90(1):292-302. PubMed ID: 18508339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.