These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 15900610)

  • 1. Effect of synovial fluid, phosphate-buffered saline solution, and water on the dissolution and corrosion properties of CoCrMo alloys as used in orthopedic implants.
    Lewis AC; Kilburn MR; Papageorgiou I; Allen GC; Case CP
    J Biomed Mater Res A; 2005 Jun; 73(4):456-67. PubMed ID: 15900610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The entrapment of corrosion products from CoCr implant alloys in the deposits of calcium phosphate: a comparison of serum, synovial fluid, albumin, EDTA, and water.
    Lewis AC; Kilburn MR; Heard PJ; Scott TB; Hallam KR; Allen GC; Learmonth ID
    J Orthop Res; 2006 Aug; 24(8):1587-96. PubMed ID: 16779825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of calcium phosphate deposition upon corrosion of CoCr alloys and the potential for implant failure.
    Lewis AC; Heard PJ
    J Biomed Mater Res A; 2005 Nov; 75(2):365-73. PubMed ID: 16088901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of carbides and microstructure of CoCrMo alloys on their metallic dissolution resistance.
    Valero-Vidal C; Casabán-Julián L; Herraiz-Cardona I; Igual-Muñoz A
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4667-76. PubMed ID: 24094174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of porous coating processing on the corrosion behavior of cast Co-Cr-Mo surgical implant alloys.
    Jacobs JJ; Latanision RM; Rose RM; Veeck SJ
    J Orthop Res; 1990 Nov; 8(6):874-82. PubMed ID: 2213344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of alloying elements on the corrosion stability of CoCrMo implant alloy in Hank's solution.
    Metikos-Huković M; Pilić Z; Babić R; Omanović D
    Acta Biomater; 2006 Nov; 2(6):693-700. PubMed ID: 16884967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure and corrosion behaviour in biological environments of the new forged low-Ni Co-Cr-Mo alloys.
    Hiromoto S; Onodera E; Chiba A; Asami K; Hanawa T
    Biomaterials; 2005 Aug; 26(24):4912-23. PubMed ID: 15769525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metallurgical, surface, and corrosion analysis of Ni-Cr dental casting alloys before and after porcelain firing.
    Lin HY; Bowers B; Wolan JT; Cai Z; Bumgardner JD
    Dent Mater; 2008 Mar; 24(3):378-85. PubMed ID: 17706759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cobalt-based alloys for orthopaedic applications studied by electrochemical and XPS analysis.
    Kocijan A; Milosev I; Pihlar B
    J Mater Sci Mater Med; 2004 Jun; 15(6):643-50. PubMed ID: 15346730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An assessment of biomedical CoCrMo alloy fabricated by direct metal laser sintering technique for implant applications.
    de Castro Girão D; Béreš M; Jardini AL; Filho RM; Silva CC; de Siervo A; Gomes de Abreu HF; Araújo WS
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110305. PubMed ID: 31761221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure, hardness, corrosion resistance and porcelain shear bond strength comparison between cast and hot pressed CoCrMo alloy for metal-ceramic dental restorations.
    Henriques B; Soares D; Silva FS
    J Mech Behav Biomed Mater; 2012 Aug; 12():83-92. PubMed ID: 22659369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Friction, lubrication, and polymer transfer between UHMWPE and CoCrMo hip-implant materials: a fluorescence microscopy study.
    Crockett R; Roba M; Naka M; Gasser B; Delfosse D; Frauchiger V; Spencer ND
    J Biomed Mater Res A; 2009 Jun; 89(4):1011-8. PubMed ID: 18478550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corrosion behaviour and surface analysis of a Co-Cr and two Ni-Cr dental alloys before and after simulated porcelain firing.
    Qiu J; Yu WQ; Zhang FQ; Smales RJ; Zhang YL; Lu CH
    Eur J Oral Sci; 2011 Feb; 119(1):93-101. PubMed ID: 21244518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the environment on wear ranking and corrosion of biomedical CoCrMo alloys.
    Muñoz AI; Mischler S
    J Mater Sci Mater Med; 2011 Mar; 22(3):437-50. PubMed ID: 21221728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporation of active ions into calcium phosphate coatings, their release behavior and mechanism.
    Lindahl C; Xia W; Lausmaa J; Engqvist H
    Biomed Mater; 2012 Aug; 7(4):045018. PubMed ID: 22736143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants.
    Auclair-Daigle C; Bureau MN; Legoux JG; Yahia L
    J Biomed Mater Res A; 2005 Jun; 73(4):398-408. PubMed ID: 15892136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31.
    Gray-Munro JE; Strong M
    J Biomed Mater Res A; 2009 Aug; 90(2):339-50. PubMed ID: 18508354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrosurgery Induced Damage to Ti-6Al-4V and CoCrMo Alloy Surfaces in Orthopedic Implants In Vivo and In Vitro.
    Kubacki GW; Sivan S; Gilbert JL
    J Arthroplasty; 2017 Nov; 32(11):3533-3538. PubMed ID: 28712796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical corrosion and metal ion release from Co-Cr-Mo prosthesis with titanium plasma spray coating.
    Reclaru L; Eschler PY; Lerf R; Blatter A
    Biomaterials; 2005 Aug; 26(23):4747-56. PubMed ID: 15763254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids.
    Rettig R; Virtanen S
    J Biomed Mater Res A; 2009 Feb; 88(2):359-69. PubMed ID: 18286623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.