BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 15900727)

  • 41. Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil.
    Serrano A; Gallego M; González JL; Tejada M
    Environ Pollut; 2008 Feb; 151(3):494-502. PubMed ID: 17555854
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of chemical additives on hydrocarbon disappearance and biodegradation in freshwater marsh microcosms.
    Nyman JA; Klerks PL; Bhattacharyya S
    Environ Pollut; 2007 Sep; 149(2):227-38. PubMed ID: 17434246
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pilot plant study of the microbial flora in a diesel fuel contaminated soil.
    Abbondanzi F; Antonellini R; Campisi T; Gagni S; Malaspina F; Iacondini A
    Ann Chim; 2001; 91(7-8):391-400. PubMed ID: 11554177
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Application of rhamnolipid and surfactin for enhanced diesel biodegradation--effects of pH and ammonium addition.
    Whang LM; Liu PW; Ma CC; Cheng SS
    J Hazard Mater; 2009 May; 164(2-3):1045-50. PubMed ID: 18950937
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of soil and a nonionic surfactant on BTE-oX and MTBE biodegradation kinetics.
    Acuna-Askar K; Gracia-Lozano MV; Villarreal-Chiu JF; Marmolejo JG; Garza-Gonzalez MT; Chavez-Gomez B
    Water Sci Technol; 2005; 52(8):107-15. PubMed ID: 16312957
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Eco-toxicological studies of diesel and biodiesel fuels in aerated soil.
    Lapinskiene A; Martinkus P; Rebzdaite V
    Environ Pollut; 2006 Aug; 142(3):432-7. PubMed ID: 16338045
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biodegradation of diesel fuel by a microbial consortium in the presence of 1-alkoxymethyl-2-methyl-5-hydroxypyridinium chloride homologues.
    Chrzanowski L; Stasiewicz M; Owsianiak M; Szulc A; Piotrowska-Cyplik A; Olejnik-Schmidt AK; Wyrwas B
    Biodegradation; 2009 Sep; 20(5):661-71. PubMed ID: 19301130
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Toxicity and inhibition of bacterial growth by series of alkylphenol polyethoxylate nonionic surfactants.
    Song M; Bielefeldt AR
    J Hazard Mater; 2012 Jun; 219-220():127-32. PubMed ID: 22537918
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of hexachlorobenzene-dechlorinating mixed cultures using polysorbate surfactants as a carbon source.
    Yeh DH; Pavlostathis SG
    Water Sci Technol; 2001; 43(2):43-50. PubMed ID: 11380204
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum.
    Tiraferri A; Chen KL; Sethi R; Elimelech M
    J Colloid Interface Sci; 2008 Aug; 324(1-2):71-9. PubMed ID: 18508073
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of nonionic surfactants on biodegradation of phenanthrene by a marine bacteria of Neptunomonas naphthovorans.
    Li JL; Chen BH
    J Hazard Mater; 2009 Feb; 162(1):66-73. PubMed ID: 18554784
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Implication of hydraulic properties of bioremediated diesel-contaminated soil.
    Hyun S; Ahn MY; Zimmerman AR; Kim M; Kim JG
    Chemosphere; 2008 Apr; 71(9):1646-53. PubMed ID: 18321559
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The influence of a NAPL on the loss and biodegradation of 14C-phenanthrene residues in two dissimilar soils.
    Swindell AL; Reid BJ
    Chemosphere; 2007 Jan; 66(2):332-9. PubMed ID: 16766015
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of alkali metal cations on adsorption of guar gum onto quartz.
    Ma X; Pawlik M
    J Colloid Interface Sci; 2005 Sep; 289(1):48-55. PubMed ID: 16009216
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biodegradation of diesel oil and gasoline contaminated effluent employing intermittent aeration.
    Vieira PA; Vieira RB; Faria S; Ribeiro EJ; Cardoso VL
    J Hazard Mater; 2009 Sep; 168(2-3):1366-72. PubMed ID: 19356851
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Production of galacto-manno-oligosaccharides from guar gum by beta-mannanase from Penicillium oxalicum SO.
    Kurakake M; Sumida T; Masuda D; Oonishi S; Komaki T
    J Agric Food Chem; 2006 Oct; 54(20):7885-9. PubMed ID: 17002466
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of diesel concentration on the fate of phenanthrene in soil.
    Swindell AL; Reid BJ
    Environ Pollut; 2006 Mar; 140(1):79-86. PubMed ID: 16139935
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selection of bacteria and plant seeds for potential use in the remediation of diesel contaminated soils.
    Al-Ghazawi Z; Saadoun I; Al-Shak'ah A
    J Basic Microbiol; 2005; 45(4):251-6. PubMed ID: 16028197
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [The prospects of using bacteria of the genus Rhodococcus and microbial surfactants for the degradation of oil pollutants].
    Karpenko EV; Vil'danova-Martsishin RI; Shcheglova NS; Pirog TP; Voloshina IN
    Prikl Biokhim Mikrobiol; 2006; 42(2):175-9. PubMed ID: 16761570
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biological surfactant production in a biological slurry reactor treating diesel fuel contaminated soil.
    Cassidy DP
    Water Environ Res; 2001; 73(1):87-94. PubMed ID: 11558308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.