These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 15900965)

  • 1. Unity in organisation and regulation of catabolic operons in Lactobacillus plantarum, Lactococcus lactis and Listeria monocytogenes.
    Andersson U; Molenaar D; Rådström P; de Vos WM
    Syst Appl Microbiol; 2005 Apr; 28(3):187-95. PubMed ID: 15900965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative and functional analysis of the rRNA-operons and their tRNA gene complement in different lactic acid bacteria.
    de Vries MC; Siezen RJ; Wijman JG; Zhao Y; Kleerebezem M; de Vos WM; Vaughan EE
    Syst Appl Microbiol; 2006 Jul; 29(5):358-67. PubMed ID: 16338113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactobacillus plantarum gene clusters encoding putative cell-surface protein complexes for carbohydrate utilization are conserved in specific gram-positive bacteria.
    Siezen R; Boekhorst J; Muscariello L; Molenaar D; Renckens B; Kleerebezem M
    BMC Genomics; 2006 May; 7():126. PubMed ID: 16723015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum.
    Vastano V; Perrone F; Marasco R; Sacco M; Muscariello L
    Arch Microbiol; 2016 Apr; 198(3):295-300. PubMed ID: 26546316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of cadaverine production by foodborne pathogens in the presence of Lactobacillus, Lactococcus, and Streptococcus spp.
    Kuley E; Balıkcı E; Özoğul I; Gökdogan S; Ozoğul F
    J Food Sci; 2012 Dec; 77(12):M650-8. PubMed ID: 22853653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GlaR (YugA)-a novel RpiR-family transcription activator of the Leloir pathway of galactose utilization in Lactococcus lactis IL1403.
    Aleksandrzak-Piekarczyk T; Szatraj K; Kosiorek K
    Microbiologyopen; 2019 May; 8(5):e00714. PubMed ID: 30099846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of genes associated with stress conditions by Listeria monocytogenes in interaction with nisin producer Lactococcus lactis.
    Miranda RO; Campos-Galvão MEM; Nero LA
    Food Res Int; 2018 Mar; 105():897-904. PubMed ID: 29433286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of mptC of Listeria monocytogenes induces sensitivity to class IIa bacteriocins in Lactococcus lactis.
    Ramnath M; Arous S; Gravesen A; Hastings JW; Héchard Y
    Microbiology (Reading); 2004 Aug; 150(Pt 8):2663-2668. PubMed ID: 15289562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-surface display of E7 antigen from human papillomavirus type-16 in Lactococcus lactis and in Lactobacillus plantarum using a new cell-wall anchor from lactobacilli.
    Cortes-Perez NG; Azevedo V; Alcocer-González JM; Rodriguez-Padilla C; Tamez-Guerra RS; Corthier G; Gruss A; Langella P; Bermúdez-Humarán LG
    J Drug Target; 2005 Feb; 13(2):89-98. PubMed ID: 15823960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Inducible Operon Is Involved in Inulin Utilization in Lactobacillus plantarum Strains, as Revealed by Comparative Proteogenomics and Metabolic Profiling.
    Buntin N; Hongpattarakere T; Ritari J; Douillard FP; Paulin L; Boeren S; Shetty SA; de Vos WM
    Appl Environ Microbiol; 2017 Jan; 83(2):. PubMed ID: 27815279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of the gap operon from Lactobacillus plantarum and Lactobacillus sakei.
    Naterstad K; Rud I; Kvam I; Axelsson L
    Curr Microbiol; 2007 Mar; 54(3):180-5. PubMed ID: 17294332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering the Regulation of the Mannitol Operon Paves the Way for Efficient Production of Mannitol in Lactococcus lactis.
    Xiao H; Bang-Berthelsen CH; Jensen PR; Solem C
    Appl Environ Microbiol; 2021 Jul; 87(16):e0077921. PubMed ID: 34105983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fructose utilization in Lactococcus lactis as a model for low-GC gram-positive bacteria: its regulator, signal, and DNA-binding site.
    Barrière C; Veiga-da-Cunha M; Pons N; Guédon E; van Hijum SA; Kok J; Kuipers OP; Ehrlich DS; Renault P
    J Bacteriol; 2005 Jun; 187(11):3752-61. PubMed ID: 15901699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional pattern of genes coding for the proteolytic system of Lactococcus lactis and evidence for coordinated regulation of key enzymes by peptide supply.
    Guédon E; Renault P; Ehrlich SD; Delorme C
    J Bacteriol; 2001 Jun; 183(12):3614-22. PubMed ID: 11371525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA.
    Luesink EJ; van Herpen RE; Grossiord BP; Kuipers OP; de Vos WM
    Mol Microbiol; 1998 Nov; 30(4):789-98. PubMed ID: 10094627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA.
    Linares DM; del Río B; Ladero V; Redruello B; Martín MC; Fernández M; Alvarez MA
    Int J Food Microbiol; 2013 Jul; 165(1):43-50. PubMed ID: 23688550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional regulation and evolution of lactose genes in the galactose-lactose operon of Lactococcus lactis NCDO2054.
    Vaughan EE; Pridmore RD; Mollet B
    J Bacteriol; 1998 Sep; 180(18):4893-902. PubMed ID: 9733693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of a novel inducible expression vector for Lactococcus lactis M4 and Lactobacillus plantarum Pa21.
    Maidin MS; Song AA; Jalilsood T; Sieo CC; Yusoff K; Rahim RA
    Plasmid; 2014 Jul; 74():32-8. PubMed ID: 24879963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological function of the maltose operon regulator, MalR, in Lactococcus lactis.
    Andersson U; Rådström P
    BMC Microbiol; 2002 Sep; 2():28. PubMed ID: 12296976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploitation of a chromosomally integrated lactose operon for controlled gene expression in Lactococcus lactis.
    Payne J; MacCormick CA; Griffin HG; Gasson MJ
    FEMS Microbiol Lett; 1996 Feb; 136(1):19-24. PubMed ID: 8919450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.