BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

29 related articles for article (PubMed ID: 15901349)

  • 1. Polyamine Metabolism in
    Carter NS; Kawasaki Y; Nahata SS; Elikaee S; Rajab S; Salam L; Alabdulal MY; Broessel KK; Foroghi F; Abbas A; Poormohamadian R; Roberts SC
    Med Sci (Basel); 2022 Apr; 10(2):. PubMed ID: 35645240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective chemical tracking of Dnmt1 catalytic activity in live cells.
    Stankevičius V; Gibas P; Masiulionytė B; Gasiulė L; Masevičius V; Klimašauskas S; Vilkaitis G
    Mol Cell; 2022 Mar; 82(5):1053-1065.e8. PubMed ID: 35245449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rethinking the bioavailability and cellular transport properties of S-adenosylmethionine.
    Sun Y; Locasale JW
    Cell Stress; 2022 Jan; 6(1):1-5. PubMed ID: 35083422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacokinetic properties of a novel formulation of S-adenosyl-L-methionine phytate.
    Francioso A; Fanelli S; d'Erme M; Lendaro E; Miraglia N; Fontana M; Cavallaro RA; Mosca L
    Amino Acids; 2021 Oct; 53(10):1559-1568. PubMed ID: 34536129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacokinetic study of a novel oral formulation of S-adenosylmethionine (MSI-195) in healthy subjects: dose escalation, food effect and comparison to a commercial nutritional supplement product.
    Cameron BR; Ferreira L; MacDonald ID
    BMC Pharmacol Toxicol; 2020 Dec; 21(1):88. PubMed ID: 33317621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methionine metabolism in chronic liver diseases: an update on molecular mechanism and therapeutic implication.
    Li Z; Wang F; Liang B; Su Y; Sun S; Xia S; Shao J; Zhang Z; Hong M; Zhang F; Zheng S
    Signal Transduct Target Ther; 2020 Dec; 5(1):280. PubMed ID: 33273451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methionine metabolism is essential for SIRT1-regulated mouse embryonic stem cell maintenance and embryonic development.
    Tang S; Fang Y; Huang G; Xu X; Padilla-Banks E; Fan W; Xu Q; Sanderson SM; Foley JF; Dowdy S; McBurney MW; Fargo DC; Williams CJ; Locasale JW; Guan Z; Li X
    EMBO J; 2017 Nov; 36(21):3175-3193. PubMed ID: 29021282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood glutathione redox status and global methylation of peripheral blood mononuclear cell DNA in Bangladeshi adults.
    Niedzwiecki MM; Hall MN; Liu X; Oka J; Harper KN; Slavkovich V; Ilievski V; Levy D; van Geen A; Mey JL; Alam S; Siddique AB; Parvez F; Graziano JH; Gamble MV
    Epigenetics; 2013 Jul; 8(7):730-8. PubMed ID: 23803688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of threonine metabolism on S-adenosylmethionine and histone methylation.
    Shyh-Chang N; Locasale JW; Lyssiotis CA; Zheng Y; Teo RY; Ratanasirintrawoot S; Zhang J; Onder T; Unternaehrer JJ; Zhu H; Asara JM; Daley GQ; Cantley LC
    Science; 2013 Jan; 339(6116):222-6. PubMed ID: 23118012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current chemical biology approaches to interrogate protein methyltransferases.
    Luo M
    ACS Chem Biol; 2012 Mar; 7(3):443-63. PubMed ID: 22220966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S-adenosyl-L-methionine co-administration prevents the ethanol-elicited dissociation of hepatic mitochondrial ribosomes in male rats.
    Sykora P; Kharbanda KK; Crumm SE; Cahill A
    Alcohol Clin Exp Res; 2009 Jan; 33(1):1-9. PubMed ID: 18828798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Absorption of papaverine, laudanosine and cepharanthine across human intestine by using human Caco-2 cells monolayers model].
    Ma L; Yang XW
    Yao Xue Xue Bao; 2008 Feb; 43(2):202-7. PubMed ID: 18507350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport measurements across Caco-2 monolayers of different organic and inorganic selenium: influence of sulfur compounds.
    Leblondel G; Mauras Y; Cailleux A; Allain P
    Biol Trace Elem Res; 2001 Dec; 83(3):191-206. PubMed ID: 11794512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics.
    Sambuy Y; De Angelis I; Ranaldi G; Scarino ML; Stammati A; Zucco F
    Cell Biol Toxicol; 2005 Jan; 21(1):1-26. PubMed ID: 15868485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Caco-2 cell monolayers and it's application in toxicological research].
    Liu Z; Chen B
    Wei Sheng Yan Jiu; 2004 Nov; 33(6):756-9. PubMed ID: 15727196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. S-adenosyl-L-methionine: transcellular transport and uptake by Caco-2 cells and hepatocytes.
    McMillan JM; Walle UK; Walle T
    J Pharm Pharmacol; 2005 May; 57(5):599-605. PubMed ID: 15901349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caco-2 cells and Biopharmaceutics Classification System (BCS) for prediction of transepithelial transport of xenobiotics (model drug: caffeine).
    Smetanova L; Stetinova V; Kholova D; Kvetina J; Smetana J; Svoboda Z
    Neuro Endocrinol Lett; 2009; 30 Suppl 1():101-5. PubMed ID: 20027153
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.